Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic acid Catalyst metals

For propane oxidation to acrylic acid, mixed metal oxides appear to be the most promising catalysts in presence of steam. The presence of two phases such as Ml and M2 turn out to be determining. [Pg.454]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Transition metal oxides or their combinations with metal oxides from the lower row 5 a elements were found to be effective catalysts for the oxidation of propene to acrolein. Examples of commercially used catalysts are supported CuO (used in the Shell process) and Bi203/Mo03 (used in the Sohio process). In both processes, the reaction is carried out at temperature and pressure ranges of 300-360°C and 1-2 atmospheres. In the Sohio process, a mixture of propylene, air, and steam is introduced to the reactor. The hot effluent is quenched to cool the product mixture and to remove the gases. Acrylic acid, a by-product from the oxidation reaction, is separated in a stripping tower where the acrolein-acetaldehyde mixture enters as an overhead stream. Acrolein is then separated from acetaldehyde in a solvent extraction tower. Finally, acrolein is distilled and the solvent recycled. [Pg.215]

Partial oxidation of propylene results in acrolein, H2C=CHCHO, an important intermediate for acrylic acid, H2C=CHCOOH, or in the presence of NH3, in acrylonitrile, H2C=CHCN, the monomer for acrylic fibers. Mixed metal oxides are used as the catalysts [B.C. Gates, Catalytic Chemistry (1992), Wiley, New York]. [Pg.372]

A related study with a similar ruthenium catalyst led to the structural and NMR characterization of an intermediate that has the crucial Ru—C bond in place and also shares other features with the BEMAP-ruthenium diacetate mechanism.33 This mechanism, as summarized in Figure 5.4, shows the formation of a metal hydride prior to the complexation of the reactant. In contrast to the mechanism for acrylic acids shown on p. 378, the creation of the new stereocenter occurs at the stage of the addition of the second hydrogen. [Pg.381]

Much emphasis has been placed in recent times on easily recoverable liquid bi-phasic catalysts, including metal clusters in nonconventional solvents. For instance, aqueous solutions of the complexes [Ru3(CO)12.x(TPPTS)x] (x=l, 2, 3 TPPTS = triphenylphosphine-trisulfonate, P(m-C6H4S03Na)3) catalyze the hydrogenation of simple alkenes (1-octene, cyclohexene, styrene) at 60°C and 60 bar H2 at TOF up to 500 h 1 [24], while [Ru i(CO)C (TPPMS) >,] (TPPMS = triphenylphos-phine-monosulfonate, PPh2(m-C6H4S03Na) is an efficient catalyst precursor for the aqueous hydrogenation of the C=C bond of acrylic acid (TOF 780 h 1 at 40 °C and 3 bar H2) and other activated alkenes [25]. The same catalysts proved to be poorly active in room temperature ionic liquids such as [bmim][BF4] (bmim= Tbutyl-3-methylimidazolium). No details about the active species involved are known at this point. [Pg.205]

The addition of dopants is found to have beneficial effects. However, they are not restricted only to transition metals. The hydrogenation of acrylic acid can be promoted significantly by the addition of neodymium ions onto the palladium particles [142], The selective transformation of 3,4-dichloronitrobenzene to the corresponding aniline has been selected to test pre-prepared Pt hydrosols as heterogeneous catalyst precursors (see Figure 3.9) [143],... [Pg.77]

Acrolein and Acrylic Acid. Acrolein and acrylic acid are manufactured by the direct catalytic air oxidation of propylene. In a related process called ammoxida-tion, heterogeneous oxidation of propylene by oxygen in the presence of ammonia yields acrylonitrile (see Section 9.5.3). Similar catalysts based mainly on metal oxides of Mo and Sb are used in all three transformations. A wide array of single-phase systems such as bismuth molybdate or uranyl antimonate and multicomponent catalysts, such as iron oxide-antimony oxide or bismuth oxide-molybdenum oxide with other metal ions (Ce, Co, Ni), may be employed.939 The first commercial process to produce acrolein through the oxidation of propylene, however, was developed by Shell applying cuprous oxide on Si-C catalyst in the presence of I2 promoter. [Pg.510]

During the history of a half century from the first discovery of the reaction (/) and 35 years after the industrialization (2-4), these catalytic reactions, so-called allylic oxidations of lower olefins (Table I), have been improved year by year. Drastic changes have been introduced to the catalyst composition and preparation as well as to the reaction process. As a result, the total yield of acrylic acid from propylene reaches more than 90% under industrial conditions and the single pass yield of acrylonitrile also exceeds 80% in the commercial plants. The practical catalysts employed in the commercial plants consist of complicated multicomponent metal oxide systems including bismuth molybdate or iron antimonate as the main component. These modern catalyst systems show much higher activity and selectivity... [Pg.233]

More than a decade after the publication of the MoVNb catalyst system, scientists at Mitsubishi Chemical reported that modifying this family of mixed metal oxides with Te produced a catalyst for the amoxidation of propane to acrylonitrile [4] and the oxidation of propane to acrylic acid [5], Modification of the Union Carbide catalyst system with Te was probably not a random choice as it is a known propylene activator [5 b] and the molybdate phase TeMoO oxidizes propylene into acrolein and ammoxidizes propylene to acrylonitrile [6], a key intermediate in the commercial production of acrylic acid using Mo-based oxides. Significant efforts to optimize this and related mixed metal oxides continues for the production of both acrylic acid and acrylonitrile, with the main participants being Asahi, Rohm Hass, BASF, and BP. [Pg.7]

Lin MM. Complex metal-oxide catalysts for selective oxidation of propane and derivatives. I. Catalysts preparation and application in propane selective oxidation to acrylic acid. Applied Catalysis, A General. 2003 250(2) 305-318. [Pg.305]

Coal was also the feedstock for synthesis gas vide infra). Many contributions to acetylene chemistry are due to Reppe. His work on new homogeneous metal (mainly nickel) catalysts for acetylene conversion, carried out in the period from 1928 to 1945, was not published until 1948. Under the influence of nickel iodide catalysts, acetylene, water and CO were found to give acrylic acid. A process based on this chemistry was commercialized in 1955. [Pg.13]

The direct oxidation of propane has fewer restrictions on plant location since the alkane is easier to ship over long distances as the compressed liquid. Its oxidation to acrolein, acrylic acid and acrylonitrile is the subject of numerous studies. The synthesis of acrylonitrile has already been developed to the stage of a demonstration plant. Catalysts are based on V-Sb mixed oxides, with additional metal promoters. Propylene is generally recognized as the intermediate through which acrylonitrile is obtained. Selectivities are close to 50-60% at ca. 20% propane conversion. [Pg.77]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert silica or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acrylic acid were prepared from bismuth, cobalt, iron, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic silicic acids. Preferred second-stage catatysts generally7 are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity7 and productivity7 (39,45,46). [Pg.152]

When an aqueous organic solution of acetylene is treated with CO at tSO C and 30 atm, in the presence of a catalytic amount of NifCOK. acrylic acid is formed with a selectivity of about 90%. In the presence of alcohols, the corresponding acrylic ester is formed with a selectivity of about 85%. The interesting thing with methyl acetylene, is that the major product ( 80%) is methyl methacrylate. The preferred catalyst t undoubtedly based on nickel, althou other Group Vlll metal-carbonyl complexes (e.g. Fe(CO)s) will catalyze these reactions. [Pg.137]

One-step partial oxidation of propane to acrylic acid (an essential chemical widely used for the production of esters, polyesters, amides, anilides, etc.) has been investigated so far on three types of catalysts, namely, vanadium phosphorus oxides, heteropolycompounds and, more successfully, on mixed metal oxides. The active catalysts generally consist of Mo and V elements, which are also found in catalysts used for the oxidation of propene to acrolein and that of acrolein to acrylic acid. [Pg.416]


See other pages where Acrylic acid Catalyst metals is mentioned: [Pg.470]    [Pg.947]    [Pg.485]    [Pg.226]    [Pg.114]    [Pg.5]    [Pg.857]    [Pg.105]    [Pg.21]    [Pg.501]    [Pg.201]    [Pg.132]    [Pg.136]    [Pg.511]    [Pg.522]    [Pg.124]    [Pg.136]    [Pg.35]    [Pg.204]    [Pg.9]    [Pg.803]    [Pg.56]    [Pg.39]    [Pg.290]    [Pg.95]    [Pg.113]    [Pg.43]    [Pg.105]    [Pg.151]    [Pg.470]    [Pg.643]    [Pg.948]   


SEARCH



Acrylates metal

Acrylates metalation

Acrylic acid catalysts

Acrylic catalyst

© 2024 chempedia.info