Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids trace analysis

Liquid Ghromatography/Mass Spectrometry. Increased use of Hquid chromatography/mass spectrometry (Ic/ms) for stmctural identification and trace analysis has become apparent. Thermospray Ic/ms has been used to identify by-products in phenyl isocyanate precolumn derivatization reactions (74). Five compounds resulting from the reaction of phenyUsocyanate and the reaction medium were identified two from a reaction between phenyl isocyanate and methanol, two from the reaction between phenyl isocyanate and water, and one from the polymerisation of phenyl isocyanate. There were also two reports of derivatisation to enhance either the response or stmctural information from thermospray Ic/ms for linoleic acid hpoxygenase metabohtes (75) and for cortisol (76). [Pg.246]

E. A. Hogendoorn, E. Dijkman, B. Baumann, C. Hidalgo, J. V. Sancho and E. Hernandez, Strategies in using analytical restricted access media columns for the removal of humic acid interferences in the trace analysis of acidic herbicides in water... [Pg.373]

The liberated iodine may be titrated using std thiosulfate soln, or, in trace analysis, detd by spectrophotometric methods. Other reducing agents commonly used in peroxide analysis are hydriodic acid, ferrous, titanous, stannous, and arsenious ions. Also (recently), triphenylphos-phine, which is oxidized to triphenyl phosphine oxide. The excess triphenyl phosphine may be detd gravimetric ally, tit rime trically, or spectro-photometrically... [Pg.681]

Interactions in Solid-Surface Luminescence Temperature Variation. Solid-surface luminescence analysis, especially solid-surface RTF, is being used more extensively in organic trace analysis than in the past because of its simplicity, selectivity, and sensitivity (,1,2). However, the interactions needed for strong luminescence signals are not well understood. In order to understand some of the interactions in solid-surface luminescence we recently developed a method for the determination of room-temperature fluorescence and phosphorescence quantum yields for compounds adsorbed on solid surfaces (27). In addition, we have been investigating the RTF and RTF properties of the anion of p-aminobenzoic acid adsorbed on sodium acetate as a model system. Sodium acetate and the anion of p-aminobenzoic acid have essentially no luminescence impurities. Also, the overall system is somewhat easier to study than compounds adsorbed on other surfaces, such as filter paper, because sodium acetate is more simple chemically. [Pg.160]

We inferred that these properties might be exploited in a series of unique derivatizing reagents designed specifically for trace analysis of organic compounds using HPLC separation and fluorescence detection. The use of these pyridones for the analytical purposes reported here is based on their acidic properties. Treatment of a lH-2-pyridone with a base converts the pyridone to its salt. [Pg.207]

Bronlc acids containing electron-capturing subsitituents were developed by Poole and co-workers. Table 8.19 (451,535,536). In terms of volatility, stability of derivatives, and response to the electron-capture detector the 3,5-bis(trifluoromethyl)benzeneboronic acid, 2,4-dichlorobenzeneboronic acid, and 4-bromo-benzeneboronic acid were recommended for general applications. In particular, the 3,5-bis(trifluoromethyl)benzeneboronate derivatives are remarkably volatile, more so than the benzeneboronates, and are suitable for the analysis of bifunctional compounds of low volatility. All the benzeneboronate derivatives are susceptible to solvolysis which is the primary limitation to their general use for trace analysis. [Pg.441]

The EDX spectrum (Fig. 11.8) shows the main surface scale impurity peaks of silica, aluminium, sodium, chloride and iron. If this EDX is compared to that of a new, clean membrane surface (Fig. 11.9), the clean surface shows sulphur, carbon and oxygen, which is typical of a porous polysulphone support. It was concluded that the scale is amorphous, composed of aluminosilicate and silicate. These compounds are normally found in trace amounts in brine solutions. Analysis showed that the surface could be cleaned with hydrochloric acid and analysis of the dissolved scale was similar to the EDX spectrum analysis. Review of the plant operation determined that the precipitation was the result of high pH in combination with high silica concentrations in the brine. [Pg.159]

C. Ambient Air Analysb. Trace analysis of toxic gases in the environment is receiving more emphasis by many industries. Some of the more polar gases are very difficult to analyze by gas chromatography. One example is monochloroacetyl chloride. This gas can be collected from the atmosphere on Silica gel, extracted in dilute sodium bicarbonate, and then analyzed directly by IC as monochloroacetic acid (10). A... [Pg.238]

Samarium may be analyzed by spectrographic and spectrophotometric methods. In solution, the trivalent samarium shows sharp and intense absorption bands at 362.5, 347.5 and 402.0 nm. Trace analysis may be carried out most accurately by flame AA, ICP-AES, ICP/MS and neutron activation analysis. ICP/MS is the most sensitive method. The metal and its insoluble salts may be solubilized by digestion with acids and diluted appropriately for most instrumental measurements. [Pg.807]

Derivatization After Desorption. Alkanolamines, highly polar basic compounds, present a difficult analytical problem. Although direct gas chromatographic separations can be achieved, this technique is not applicable to trace analysis due to sorption problems at trace concentrations. A derivatization/gas chromatographic procedure has been developed for the determination of alkanolamines in air as low as 100 ppb (54,55). The samples are collected on activated alumina and desorbed with an aqueous solution of 1-octanesulfonic acid. The... [Pg.169]

Goto J, Watanabe K, Miura H, Nambara T, Iida T (1987) Trace analysis of bile acids by gas chromatography-mass spectrometry with negative ion chemical ionization detection. J Chro-matogr 388 379-387... [Pg.663]

In analogy to sample introduction by hydride generation, mercury trace analysis is possible by reducing Hg compounds to the metal using the cold vapour technique or the determination of iodine at the ultratrace level (after oxidation with 70 % perchloric acid of iodide to iodine) via the gas phase. [Pg.44]


See other pages where Acids trace analysis is mentioned: [Pg.275]    [Pg.436]    [Pg.437]    [Pg.438]    [Pg.439]    [Pg.275]    [Pg.436]    [Pg.437]    [Pg.438]    [Pg.439]    [Pg.471]    [Pg.88]    [Pg.223]    [Pg.431]    [Pg.439]    [Pg.941]    [Pg.944]    [Pg.242]    [Pg.277]    [Pg.513]    [Pg.25]    [Pg.26]    [Pg.240]    [Pg.345]    [Pg.433]    [Pg.437]    [Pg.42]    [Pg.436]    [Pg.436]    [Pg.90]    [Pg.51]    [Pg.241]    [Pg.74]    [Pg.71]    [Pg.679]    [Pg.241]    [Pg.679]    [Pg.202]    [Pg.263]    [Pg.319]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Trace analysis

© 2024 chempedia.info