Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid nitric acid

Potassium nitrate. Sulfuric acid. Water Sodium nitrate. Sulfuric acid. Water Nitric acid. Sulfuric acid. Cornstarch, Ammonia Starch, Sulfuric acid. Nitric acid Nitric acid. Sulfuric acid. Cellophane, Cotton, Sodium bicarbonate... [Pg.110]

NITRATION IN AQUEOUS SOLUTIONS OF MINERAL ACIDS 2.4.1 The state of nitric acid in aqueous sulphuric acid Nitric acid is completely converted into nitronium ions in concentrated sulphuric acid ( 2.3.1) ... [Pg.19]

Mesityl oxide 2-Aminoethanol, chlorosulfonic acid, nitric acid, ethylenediamine, sulfuric acid... [Pg.1209]

Phthalic acid Nitric acid, sodium nitrite... [Pg.1211]

Other possible chemical synthesis routes for lactic acid include base-cataly2ed degradation of sugars oxidation of propylene glycol reaction of acetaldehyde, carbon monoxide, and water at elevated temperatures and pressures hydrolysis of chloropropionic acid (prepared by chlorination of propionic acid) nitric acid oxidation of propylene etc. None of these routes has led to a technically and economically viable process (6). [Pg.513]

C. HIO is prepared by oxidation of iodine with perchloric acid, nitric acid, or hydrogen peroxide or oxidation of iodine in aqueous suspension to iodic acid by silver nitrate. Iodic acid is also formed by anodic oxidation at a platinum electrode of iodine dissolved in hydrochloric acid (113,114). [Pg.365]

Thermo dynamic data for nitric acid are given ia Table 2. Properties for the ternary systems sulfuric acid—nitric acid—water (5,14) and magnesium nitrate—nitric acid—water (11,15—17) used ia processes for concentrating nitric acid are available. [Pg.39]

Acidic Properties. As a typical acid, it reacts readily with alkaUes, basic oxides, and carbonates to form salts. The largest iadustrial appHcation of nitric acid is the reaction with ammonia to produce ammonium nitrate. However, because of its oxidising nature, nitric acid does not always behave as a typical acid. Bases having metallic radicals ia a reduced state (eg, ferrous and staimous hydroxide becoming ferric and stannic salts) are oxidized by nitric acid. Except for magnesium and manganese ia very dilute acid, nitric acid does not Hberate hydrogen upon reaction with metals. [Pg.39]

Acid Treatment. The treatment of petroleum products with acids has been in use for a considerable time in the petroleum industry. Various acids such as hydrofluoric acid, hydrochloric acid, nitric acid, and phosphoric acid have been used in addition to the most commonly used sulfuric acid, but in most instances there is Httie advantage in using any acid other than sulfuric. [Pg.208]

The y -phenylenediamiaes are easily obtained by dinitrating, followed by catalyticaHy hydrogenating, an aromatic hydrocarbon. Thus, the toluenediamiaes are manufactured by nitrating toluene with a mixture of sulfuric acid, nitric acid, and 23% water at 330°C which first produces a mixture (60 40) of the ortho and para mononitrotoluenes. Further nitration produces the 80 20 mixture of 2,4- and 2,6-dinitrotoluene. Catalytic hydrogenation produces the commercial mixture of diamiaes which, when converted to diisocyanates, are widely used ia the production of polyurethanes (see Amines, aromatic, DIAMINOTOLUENES) (22). [Pg.255]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

Water, % Sulfuric acid, % Nitric acid, % Nitrogen content, % DS... [Pg.266]

Benzyl chloride readily forms a Grignard compound by reaction with magnesium in ether with the concomitant formation of substantial coupling product, 1,2-diphenylethane [103-29-7]. Benzyl chloride is oxidized first to benzaldehyde [100-52-7] and then to benzoic acid. Nitric acid oxidizes directly to benzoic acid [65-85-0]. Reaction with ethylene oxide produces the benzyl chlorohydrin ether, CgH CH20CH2CH2Cl (18). Benzylphosphonic acid [10542-07-1] is formed from the reaction of benzyl chloride and triethyl phosphite followed by hydrolysis (19). [Pg.59]

Cu(N03 )26H2 0, is produced by crystallization from solutions below the transition poiat of 26.4°C. A basic copper nitrate [12158-75-7] Cu2(N02)(0H)2, rather than the anhydrous product is produced on dehydration of the hydrated salts. The most common commercial forms for copper nitrate ate the ttihydtate and solutions containing about 14% copper. Copper nitrate can be prepared by dissolution of the carbonate, hydroxide, or oxides ia nitric acid. Nitric acid vigorously attacks copper metal to give the nitrate and evolution of nitrogen oxides. [Pg.254]

Esterification. Esters are formed by the reaction of ethanol with inorganic and organic acids, acid anhydrides, and acid halides. If the inorganic acid is oxygenated, eg, sulfuric acid, nitric acid, the ester has a carbon—oxygen linkage that is easily hydrolyzed (24—26). [Pg.403]

TABLE 2-19 Vapor Pressures of the System Water-Sulfuric Acid-Nitric Acid... [Pg.129]

Sodium hypochlorite hy action of chlorine on aqueous sodium hydroxide Ammonium nitrate hy action of ammonia on aqueous nitric acid Nitric acid hy absorption of nitric oxide in water... [Pg.706]

Manufacture of pure products, such as sulfuric acid, nitric acid, nitrates, phosphates, adipic acid, and so on... [Pg.2105]

Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)... Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)...
Reagents such as water, ammonia, hydrochloric acid, nitric acid, perchloric acid, and sulfuric acid can be purified via distillation (preferably under reduced pressure and particularly with perchloric acid) using an allglass still. Isothermal distillation is convenient for ammonia a beaker containing concentrated ammonia is placed alongside a beaker of distilled water for several days in an empty desiccator so that some of the ammonia distils over into the water. The redistilled ammonia should be kept in polyethylene or parafrin-waxed bottles. Hydrochloric acid can be purified in the same way. To ensure the absence of metal contaminants from some salts (e.g. ammonium acetate), it may be more expedient to synthesise the salts using distilled components rather than to attempt to purify the salts themselves. [Pg.53]

Mineral acids attack the nylons but the rate of attack depends on the type of nylon and the nature and concentration of the acid. Nitric acid is generally active at all concentrations. The nylons have very good resistance to alkalis at room temperature. Resistance to all chemicals is more limited at elevated temperatures. [Pg.495]

Examples include hydrochloric acid, nitric acid, and sulphuric acid. These are strong acids which are almost completely dissociated in water. Weak acids, such as hydrogen sulphide, are poorly dissociated producing low concentrations of hydrogen ions. Acids tend to be coiTosive with a sharp, sour taste and turn litmus paper red they give distinctive colour changes with other indicators. Acids dissolve metals such as copper and liberate hydrogen gas. They also react with carbonates to liberate carbon dioxide ... [Pg.27]

Hydrobromic, hydrochloric, hydrofluoric and hydroiodic acids Methacrylic acid Nitric acid... [Pg.73]

Chromic acid, nitric acid, hydroxyl-containing compounds, ethylene glycol, perchloric acid, peroxides, or permanganates Concentrated nitric and sulphuric acid mixtures Chlorine, bromine, copper, silver, fluorine or mercury Carbon dioxide, carbon tetrachloride, or other chlorinated... [Pg.233]

Mineral acid Hydrobromic acid Hydrochloric acid Hydrofluoric acid Nitric acid Sulphuric acid... [Pg.506]

Chromic acid, nitric acid, hydroxyl-containing compounds, ethylene glycol, perchloric acid, peroxides, and permanganates. [Pg.1031]

Instead of using sulfuric or phosphoric acid, nitric acid can be used to treat the phosphate lock to produce calcium nitrate fertilizer. Instead of neutralizing phosphoric acid with calcium which is useless, ammonia can be used to give ammonium phosphate, hence, two fertilizing elements. [Pg.265]

The most important use of ammonia is in the production of nitric acid (HNO3). Ammonia burns in oxygen, releasing hydrogen to form water and free nitrogen. With the catalysts platinum and rhodium, ammonia is oxidized and reacted with water to form nitric acid. Nitric acid treated... [Pg.265]

In an attempt to protect thiophenols during electrophilic substitution reactions on the aromatic ring, the three substituted thioethers were prepared. After acetylation of the aromatic ring (with moderate yields), the protective group was converted to the disulfide in moderate yields, 50-60%, by oxidation with hydrogen peroxide/boiling mineral acid, nitric acid, or acidic potassium permanganate. ... [Pg.479]

Although the irons have such poor resistance to sulphuric acid solutions, they are reported to be much more resistant to sulphuric acid/nitric acid mixtures which rarely cause corrosion rates of more than 1 -27 mm/y. Aqua regia is corrosive to the alloys, although Kiittner has reported that an increase in the chromium content of the alloys, apparently according to the formula... [Pg.617]

Metal Sodium chloride Sodium sulphate Sodium chromate Hydrochloric acid Nitric acid Sodium hydroxide A mmonium hydroxide Calcium hydroxide (sat d) Barium hydroxide (sat d)... [Pg.745]


See other pages where Acid nitric acid is mentioned: [Pg.205]    [Pg.73]    [Pg.277]    [Pg.140]    [Pg.27]    [Pg.44]    [Pg.330]    [Pg.173]    [Pg.451]    [Pg.85]    [Pg.295]    [Pg.150]    [Pg.870]    [Pg.451]    [Pg.516]    [Pg.258]    [Pg.275]   
See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.134 ]




SEARCH



© 2024 chempedia.info