Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids and atmosphere

Several points are noteworthy first, the conversion of the 2 1 cobalt(II) complex into the 3 1 cobalt(III) complex in the presence of mineral acid and atmospheric oxygen, which no doubt accounts for the variable results obtained by earlier workers and second, the isolation of the complexes of formula [(LH)2ConX2] and their facile conversion into the complexes of formula [L2C011]. The former were considered to be octahedrally coordinated cobalt(II) complexes on the basis of magnetic and conductance measurements and represented the first examples of metal... [Pg.42]

Because of the central role of OH in tropospheric chemistry any variation in the concentration of OH in the troposphere is cause for concern. A change in OH levels would probably lead to changes in the concentration of a variety of greenhouse gases thereby causing a perturbation in the climate. The rates of formation of acids and atmospheric oxidants would... [Pg.245]

Chemical weathering generally involves the attack of H O and associated acidity, and atmospheric O2 (oxidation) on parent materials. [Pg.232]

When organic fuels are burned, carbon dioxide and water vapor are released along with various amounts of sulfur dioxide and nitrogen oxides. The sulfur and nitrogen oxides in the atmosphere are then further oxidized with the assistance of ultraviolet solar radiation when these gases are scrubbed from the air by precipitation, a dilute solution of sulfuric acid and nitric acid forms. Carbon dioxide itself hydrolyzes to carbonic acid and is important in the marine carbonate buffer system however, it is a weak organic acid and atmospheric concentrations typically lower the pH of distilled water only to about 5.7 (5-6). [Pg.202]

Hydrogen sulphide is slightly soluble in water, giving an approximately 0.1 M solution under 1 atmosphere pressure it can be removed from the solution by boiling. The solution is weakly acidic and dissolves in alkalis to give sulphides and hydrogensulphides. The equilibrium constants... [Pg.283]

On the industrial scale it is produced in large quantities for the manufacture of sulphuric acid and the production methods are dealt with later. It was once estimated that more than 4 000 000 tons of sulphur dioxide a year entered the atmosphere of Britain from the burning of coal and oil. [Pg.289]

With higher aliphatic acids, RCOOH, keten yields first a mixed anhydride CH3COOCOR, which can be distilled under reduced pressure by slow distillation at atmospheric pressure the mixed anhydride undergoes rearrangement into the anhydride of the higher fatty acid and acetic acid, for example ... [Pg.371]

Vinylacetic acid. Place 134 g. (161 ml.) of allyl cyanide (3) and 200 ml. of concentrated hydrochloric acid in a 1-htre round-bottomed flask attached to a reflux condenser. Warm the mixture cautiously with a small flame and shake from time to time. After 7-10 minutes, a vigorous reaction sets in and the mixture refluxes remove the flame and cool the flask, if necessary, in cold water. Ammonium chloride crystallises out. When the reaction subsides, reflux the mixture for 15 minutes. Then add 200 ml. of water, cool and separate the upper layer of acid. Extract the aqueous layer with three 100 ml. portions of ether. Combine the acid and the ether extracts, and remove the ether under atmospheric pressure in a 250 ml. Claisen flask with fractionating side arm (compare Fig. II, 13, 4) continue the heating on a water bath until the temperature of the vapour reaches 70°. Allow the apparatus to cool and distil under diminished pressure (compare Fig. II, 20, 1) , collect the fraction (a) distilling up to 71°/14 mm. and (6) at 72-74°/14 mm. (chiefly at 72 5°/ 14 mm.). A dark residue (about 10 ml.) and some white sohd ( crotonio acid) remains in the flask. Fraction (6) weighs 100 g. and is analytically pure vinylacetic acid. Fraction (a) weighs about 50 g. and separates into two layers remove the water layer, dry with anhydrous sodium sulphate and distil from a 50 ml. Claisen flask with fractionating side arm a further 15 g. of reasonably pure acid, b.p. 69-70°/12 mm., is obtained. [Pg.465]

Chlorodiphenyl. Diazotise 32 g. of o-chloroaniline (Section IV,34) in the presence of 40 ml. of concentrated hydrochloric acid and 22 -5 ml. of water in the usual manner (compare Section IV,61) with concentrated sodium nitrite solution. Transfer the cold, filtered diazonium solution to a 1 5 htre bolt-head flask surrounded by ice water, introduce 500 ml. of cold benzene, stir vigorously, and add a solution of 80 g. of sodium acetate trihydrate in 200 ml. of water dropwise, maintaining the temperature at 5-10°. Continue the stirring for 48 hours after the first 3 hours, allow the reaction to proceed at room temperature. Separate the benzene layer, wash it with water, and remove the benzene by distillation at atmospheric pressure distil the residue under reduced pressure and collect the 2-chlorodiphenyl at 150-155°/10 mm. The yield is 18 g. Recrystalliae from aqueous ethanol m.p. 34°. [Pg.928]

Similarly to alkenes. alkynes also insert. In the reaction of 775 carried out under a CO atmosphere in AcOH, sequential insertions of alkyne, CO. alkene. and CO take place in this order, yielding the keto ester 776[483]. However, the same reaction carried out in THF in the presence of LiCl affords the ketone 777, but not the keto ester[484]. The tricyclic terpenoid hirsutene (779) has been synthesized via the Pd-catalyzed metallo-ene carbonylation reaction of 778 with 85% diastereoselectivity as the key reaction[485], Kainic acid and allo-kainic acid (783) have been synthesized by the intramolecular insertion ol an alkene in 780, followed by carbonylation to give 781 and 782[486],... [Pg.397]

A freshly made solution behaves as a strong monobasic acid. Neutralized solutions slowly become acidic because of hydrolysis to monofluorophosphoric acid and hydrofluoric acid. The anhydrous acid undergoes slow decomposition on distillation at atmospheric pressure, reacts with alcohols to give monofluorophosphoric acid esters, and is an alkylation (qv) and a polymerization catalyst. [Pg.226]

Chemica.1 Properties. With few exceptions, SF is chemically inert at ambient temperature and atmospheric pressure. Thermodynamically SF is unstable and should react with many materials, including water, but these reactions are kineticaHy impeded by the fluorine shielding the sulfur. Sulfur hexafluoride does not react with alkah hydroxides, ammonia, or strong acids. [Pg.241]

At room temperature and atmospheric pressure, 95% of the vapor consists of dimers (13). The properties of the vapor deviate considerably from ideal gas behavior because of the dimeri2ation. In the soHd state, formic acid forms infinite chains consisting of monomers linked by hydrogen bonds (14) ... [Pg.503]

Formamide decomposes thermally either to ammonia and carbon monoxide or to hydrocyanic acid and water. Temperatures around 100°C are critical for formamide, in order to maintain the quaUty requited. The lowest temperature range at which appreciable decomposition occurs is 180—190°C. Boiling formamide decomposes at atmospheric pressure at a rate of about 0.5%/min. In the absence of catalysts the reaction forming NH and CO predominates, whereas hydrocyanic acid formation is favored in the presence of suitable catalysts, eg, aluminum oxides, with yields in excess of 90% at temperatures between 400 and 600°C. [Pg.508]

In the early 1920s Badische Arulin- und Soda-Fabrik aimounced the specific catalytic conversion of carbon monoxide and hydrogen at 20—30 MPa (200—300 atm) and 300—400°C to methanol (12,13), a process subsequendy widely industrialized. At the same time Fischer and Tropsch aimounced the Synth in e process (14,15), in which an iron catalyst effects the reaction of carbon monoxide and hydrogen to produce a mixture of alcohols, aldehydes (qv), ketones (qv), and fatty acids at atmospheric pressure. [Pg.79]

Esters. Neopentyl glycol diesters are usually Hquids or low melting soflds. Polyesters of neopentyl glycol, and in particular unsaturated polyesters, are prepared by reaction with polybasic acids at atmospheric pressure. High molecular weight linear polyesters (qv) are prepared by the reaction of neopentyl glycol and the ester (usually the methyl ester) of a dibasic acid through transesterification (37—38). The reaction is usually performed at elevated temperatures, in vacuo, in the presence of a metallic catalyst. [Pg.373]

Irradiation of ethyleneimine (341,342) with light of short wavelength ia the gas phase has been carried out direcdy and with sensitization (343—349). Photolysis products found were hydrogen, nitrogen, ethylene, ammonium, saturated hydrocarbons (methane, ethane, propane, / -butane), and the dimer of the ethyleneimino radical. The nature and the amount of the reaction products is highly dependent on the conditions used. For example, the photoproducts identified ia a fast flow photoreactor iacluded hydrocyanic acid and acetonitrile (345), ia addition to those found ia a steady state system. The reaction of hydrogen radicals with ethyleneimine results ia the formation of hydrocyanic acid ia addition to methane (350). Important processes ia the photolysis of ethyleneimine are nitrene extmsion and homolysis of the N—H bond, as suggested and simulated by ab initio SCF calculations (351). The occurrence of ethyleneimine as an iatermediate ia the photolytic formation of hydrocyanic acid from acetylene and ammonia ia the atmosphere of the planet Jupiter has been postulated (352), but is disputed (353). [Pg.11]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]


See other pages where Acids and atmosphere is mentioned: [Pg.249]    [Pg.65]    [Pg.270]    [Pg.564]    [Pg.56]    [Pg.254]    [Pg.151]    [Pg.249]    [Pg.65]    [Pg.270]    [Pg.564]    [Pg.56]    [Pg.254]    [Pg.151]    [Pg.186]    [Pg.404]    [Pg.112]    [Pg.189]    [Pg.374]    [Pg.480]    [Pg.495]    [Pg.540]    [Pg.578]    [Pg.604]    [Pg.747]    [Pg.782]    [Pg.950]    [Pg.302]    [Pg.298]    [Pg.244]    [Pg.387]    [Pg.457]    [Pg.287]    [Pg.311]    [Pg.508]    [Pg.64]    [Pg.241]   
See also in sourсe #XX -- [ Pg.145 , Pg.152 , Pg.153 ]




SEARCH



ACID RAIN AND SULFUR RELEASE INTO THE ATMOSPHERE

Acid deposition and atmospheric

Acid deposition and atmospheric chemistry

The sulphur cycle and atmospheric acidity

© 2024 chempedia.info