Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidic polymers

CHi=CMeCOOH. Colourless prisms m.p. 15-16 C, b.p. 160-5 C. Manufactured by treating propanone cyanohydrin with dilute sulphuric acid. Polymerizes when distilled or when heated with hydrochloric acid under pressure, see acrylic acid polymers. Used in the preparation of synthetic acrylate resins the methyl and ethyl esters form important glass-like polymers. [Pg.258]

CHjlCH COOH. Colourless liquid having an odour resembling that of ethanoic acid m.p. 13 C, b.p. I4I°C. Prepared by oxidizing propenal with moist AgO or treating -hy-droxypropionitrile with sulphuric acid. Slowly converted to a resin at ordinary temperatures. Important glass-like resins are now manufactured from methyl acrylate, see acrylic resins. Propenoic acid itself can also be polymerized to important polymers - see acrylic acid polymers. [Pg.329]

Polyesters from polybasic acids and polyhydric alcohols. Alkyd resins. The condensation of polyhydric alcohols and polybasic acids or anhydrides leads to polj esters known as alkyd resins. The most common member of the group is a glycerol - phthahc acid polymer, and this has led to the term glyptal resins being frequently apphed to the whole group. [Pg.1018]

X,9. DEPOLYMERISATION OF A HEXAMETHYLENE-DIAMINE-ADIPIC ACID POLYMER (NYLON 66 )... [Pg.1025]

Acrylic acid polymers Acrylic adhesives Acrylic anhydride Acrylic copolymer Acrylic-cotton blends Acrylic elastomers... [Pg.12]

Several appHcations have been found for bis(2-chloroethyl) vinylphosphonate as a comonomer imparting flame retardancy for textiles and specialty wood and paper appHcations. Its copolymerization characteristics have been reviewed (76,109). This monomer can be hydrolyzed by concentrated hydrochloric acid to vinylphosphonic acid, polymers of which have photoHthographic plate coating utiHty (see Lithography). It is also an intermediate for the preparation of an oligomeric vinylphosphonate textile finish, Akzo s Fyrol 76 [41222-33-7] (110). [Pg.479]

Polymer Electrolyte Fuel Cell. The electrolyte in a PEFC is an ion-exchange (qv) membrane, a fluorinated sulfonic acid polymer, which is a proton conductor (see Membrane technology). The only Hquid present in this fuel cell is the product water thus corrosion problems are minimal. Water management in the membrane is critical for efficient performance. The fuel cell must operate under conditions where the by-product water does not evaporate faster than it is produced because the membrane must be hydrated to maintain acceptable proton conductivity. Because of the limitation on the operating temperature, usually less than 120°C, H2-rich gas having Htde or no ([Pg.578]

Acryflc acid, polymer with ethylene, sodium salt [25750-82-7] C2H4 xNa. [Pg.405]

Melt Viscosity. As shown in Tables 2 and 3, the melt viscosity of an acid copolymer increases dramatically as the fraction of neutralization is increased. The relationship for sodium ionomers is shown in Figure 4 (6). Melt viscosities for a series of sodium ionomers derived from an ethylene—3.5 mol % methacrylic acid polymer show that the increase is most pronounced at low shear rates and that the ionomers become increasingly non-Newtonian with increasing neutralization (9). The activation energy for viscous flow has been reported to be somewhat higher in ionomers than in related acidic... [Pg.406]

An unusual slurry process which works well with sodium hydroxide is based on diffusion of the aqueous reagent into pellets of acid polymer (28). The concentration of ions in the Hquid phase is preferably two to four times the stoichiometric level, and the temperature is maintained at 50—100°C. [Pg.408]

Methacrylic acid polymer is iasoluble ia the monomer, which may result ia the plugging of transfer lines and vent systems. Polymers of the lower alkyl esters are often soluble ia the parent monomer and may be detected by an iacrease ia solution viscosity. Alternatively, dilution with a nonsolvent for the polymer such as methanol results ia the formation of haze and can be used as a diagnostic tool for determining presence of polymer. [Pg.254]

Nucleic Acids. Phosphoms is an essential component of nucleic acids, polymers consisting of chains of nucleosides, a sugar plus a nitrogenous base, and joined by phosphate groups (43,44). In ribonucleic acid (RNA), the sugar is D-ribose in deoxyribonucleic acids (DNA), the sugar is 2-deoxy-D-ribose. [Pg.378]

One-step clean-and-shine products have become popular in the household market. These products are appHed to the floor with a sponge mop and their detergent action removes and suspends soil, which coUects on the mop and is removed when the mop is rinsed with water. The formulation, which remains on the floor, dries to a poHsh film. An earlier product of this type was dispensed from an aerosol as a foam. Formulas as of this writing (ca 1995) are appHed as Hquids (29,30). In one product, the dried film obtained from the formulation is soluble in the formulation, which includes low molecular weight, high acid polymers and a fairly large amount of ammonia (31). Repeated use does not contribute to a buildup of poHsh. [Pg.210]

Resin Solubilizers. In general, water-soluble resins ate amine salts of acidic polymers. Water-soluble coatings formulated with AMP-95 and DMAMP-80 exhibit superior performance (15,16) (see Water-SOLUBLE polymers). AMP-95, used in conjunction with associative thickeners (17) or hydroxy-ethylceUulose, provides for the most efficient utilization of such thickeners. It also is the neutralizer of choice for use with hair spray resins. [Pg.19]

Amino acid polymers like poly(y-methyl-L-glutamate) [29967-97-3] h.a.ve been developed as raw materials for artificial leathers (see Leatherlike materials). Derivatives of amino acids are now finding new appHcations in industry and agriculture. [Pg.272]

Formation of N-Carboxy-(X-Amino AeidAnhydride (NCA) (85), NCAs are important as starting materials for amino acid polymers. They are prepared by the reaction of amino acids with phosgene in an aptotic solvent. [Pg.281]

Prevention of Soil Crusting. Acid-based fertilizers such as Unocal s N/Furic (a mixture of urea with sulfuric acid), acidic polymers such as FMC s Spersal (a poly(maleic acid) derivative originally developed to treat boiler scale) (58), the anionic polyacrylamides described previously, as weU as lower molecular weight analogues such as Cytec s Aerotil L Soil Conditioner, have all been used successfully in at least some circumstances to prevent the formation of soil cmsts. It is difficult to prove benefits in the laboratory, and field tests may give variable results depending on local weather conditions. [Pg.229]

Termination of the process is effected by the acid polymer layer of the receiving sheet. Acting as an ion exchanger, the acid polymer forms an immobile polymeric salt with the alkah cation and returns water in place of alkah. Capture of alkaUby the polymer molecules prevents deposition of salts on the print surface. The dye developers thus become immobile and inactive as the pH of the system is reduced. [Pg.499]

The polyimide shown is a tme thermosetting resin, but the general reaction procedure, coupling the dianhydride with the diamine, is extremely important throughout polyimide chemistry. The intermediate polyamic acid polymers form the basis for many of the polyimide resins used in advanced composites. [Pg.39]

Generally, about 35 ml. of water per mole of 80% lactic acid is obtained at this stage, and 4 6 hours of refluxing is required for its removal. The linear lactic acid polymer thus produced contains appro.ximately 3 lactic acid units. [Pg.5]

There has been recent interest in lactic acid polymers and copolymers. These materials are environmentally attractive in that renewal and cheap source materials such as potato waste and cheese whey may be used. Such materials have been used for some time in degradable and resorbable surgical sutures but recent efforts have been directed at food packaging applications. There is... [Pg.882]

VV -values for bromoform and pyrrole, acidic liquids, against poly(vinyl chloride), an acidic polymer, and dimethyl sulfoxide, a predominantly basic liquid, against polyfmethyl methacrylate), a basic polymer, but large values for the acidic liquids against PMMA and the basic liquid against PVC. 2-Iodoethanol, a bifunctional liquid, showed appreciable -values with both polymers. Despite these results in line with expectations, other results based on wettability measurements are not so clear-cut. For example, Vrbanac [94] found significant apparent acid-base interactions of various aromatic liquids against poly(ethylene), presumably a neutral substrate. [Pg.40]

Ester functions are not saponified under these ring opening conditions. However, a trans-a-acetoxy function hinders the epoxide opening reaction and a noticeable decrease in yield is observed in comparison to the cw-a-acetoxy isomer. The ring opening reaction is also dependent on the concentration of sulfuric acid. Polymer formation results when the acid concentration is too low and the reaction is markedly slower with excessive concentrations of acid. A 0.5% (vol./vol.) concentration of acid in DMSO is satisfactory. Ring opening does not occur when ethanol, acetone, or dioxane are used as solvent. [Pg.27]

Polyacrylates are an industrially important class of polymers. The name polyacrylate is variously used to refer to polymers of acrylate esters [e.g., poly(methyl methacrylate)] as well as polymers of acrylic acids [e.g., poly(meth-acrylic acid)]. Because the former is organic soluble while the latter is not, chromatographic analysis of these two requires quite different conditions. This chapter discusses both types of polymers, separating their consideration when necessary. We will refer to both types of polymers as polyacrylates, letting the context indicate whether we are referring to an ester or to an acid polymer. [Pg.539]


See other pages where Acidic polymers is mentioned: [Pg.13]    [Pg.386]    [Pg.420]    [Pg.453]    [Pg.1025]    [Pg.21]    [Pg.549]    [Pg.651]    [Pg.551]    [Pg.515]    [Pg.516]    [Pg.405]    [Pg.405]    [Pg.255]    [Pg.488]    [Pg.501]    [Pg.502]    [Pg.503]    [Pg.177]    [Pg.502]    [Pg.886]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Polymer acid

© 2024 chempedia.info