Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid catalysis studies

Dihydrodiols have not been obtained from hydrolysis reactions of benzene oxides however, evidence for the formation of 1,4-dihydrodiols has been obtained from acid-catalysis studies on 1,4-dimethylbenzene oxide 63 ° and 8,9-indan oxide 7. The mechanism of acid-catalyzed rearrangement and hydrolysis of benzene oxide has been investigated theoretically using the semiempirical allvalence electron MINDO/3 method and the perturbational MO method, both from the viewpoint of product stabilities and reaction pathways. The aromatization reaction was found to be much more exothermic than the hydrolysis and thus would be the preferred reaction, as was found experimentally. [Pg.241]

Kanomata, K. Toda, Y. Shibata, Y. Yamanaka, M. Tsuzuki, S. Gridnev, I. D. Terada, M. Secondary Stereocontrolling Interactions in Chiral Bronsted Acid Catalysis Study of a Petasis-Ferrier-Type Rearrangement Catalyzed by Chiral Phosphoric Acids. Chem. Sci. 2014,5,3515-3523. [Pg.219]

Studies on solvent effects on the endo-exo selectivity of Diels-Alder reactions have revealed the importance of hydrogen bonding interactions besides the already mentioned solvophobic interactions and polarity effects. Further evidence of the significance of the former interactions comes from computer simulations" and the analogy with Lewis-acid catalysis which is known to enhance dramatically the endo-exo selectivity (Section 1.2.4). [Pg.25]

Searching for a suitable system for studying Lewis-acid catalysis of Diels-Alder reactions in water, several points have to be considered. [Pg.48]

In summary, the effects of a number of important parameters on the catalysed reaction between 2.4 and 2.5 have been examined, representing the first detailed study of Lewis-acid catalysis of a Diels-Alder reaction in water. Crucial for the success of Lewis-acid catalysis of this reaction is the bidentate character of 2.4. In Chapter 4 attempts to extend the scope of Lewis-acid catalysis of Diels-Alder reactions in water beyond the restriction to bidentate substrates will be presented. [Pg.63]

A similar approach is followed in a recent study of the Lewis-acid catalysis of a Michael addition in acetonitrile. See Fukuzumi, S. Okamoto, T. Yasui, K Suenobu, T. Itoh, S. Otera, J. Chem. Lett. 1997, 667. [Pg.73]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

On the basis of the studies described in the preceding chapters, we anticipated that chelation is a requirement for efficient Lewis-acid catalysis. This notion was confirmed by an investigation of the coordination behaviour of dienophiles 4.11 and 4.12 (Scheme 4.4). In contrast to 4.10, these compounds failed to reveal a significant shift in the UV absorption band maxima in the presence of concentrations up to one molar of copper(ir)nitrate in water. Also the rate of the reaction of these dienophiles with cyclopentadiene was not significantly increased upon addition of copper(II)nitrate or y tterbium(III)triflate. [Pg.110]

Careful examination of literature reporting Lewis-acid catalysis of Diels-Alder reactions in combination with kinetic investigations indicate that bidentate (or multidentate) reactants are required in order to ensure efficient catalysis in water. Moreover, studies of a number of model dienophiles revealed that a potentially chelating character is not a guarantee for coordination and subsequent catalysis. Consequently extension of the scope in this direction does not seem feasible. [Pg.119]

The use of dienophile 5.1 also allows study of the effect of micelles on the Lewis-acid catalysed reaction. These studies are described in Section 5.2.2. and represent the first in-depth study of Lewis-acid catalysis in conjunction with micellar catalysis , a combination that has very recently also found application in synthetic organic chemistry . ... [Pg.132]

With the aim of catalysis of the Diels-Alder reaction of 5.1 with 5.2 by metallo micelles, preliminary studies have been performed using the surfactants 5.5a-c and 5.6 (Scheme 5.2). Unfortunately, the limited solubility of these surfactants in the pH region that allows Lewis-acid catalysis of the Diels-... [Pg.138]

First of all, given the well recognised promoting effects of Lewis-acids and of aqueous solvents on Diels-Alder reactions, we wanted to know if these two effects could be combined. If this would be possible, dramatic improvements of rate and endo-exo selectivity were envisaged Studies on the Diels-Alder reaction of a dienophile, specifically designed for this purpose are described in Chapter 2. It is demonstrated that Lewis-acid catalysis in an aqueous medium is indeed feasible and, as anticipated, can result in impressive enhancements of both rate and endo-exo selectivity. However, the influences of the Lewis-acid catalyst and the aqueous medium are not fully additive. It seems as if water diminishes the catalytic potential of Lewis acids just as coordination of a Lewis acid diminishes the beneficial effects of water. Still, overall, the rate of the catalysed reaction... [Pg.161]

I ovolac Synthesis and Properties. Novolac resins used in DNQ-based photoresists are the most complex, the best-studied, the most highly engineered, and the most widely used polymers in microlithography. Novolacs are condensation products of phenoHc monomers (typically cresols or other alkylated phenols) and formaldehyde, formed under acid catalysis. Figure 13 shows the polymerization chemistry and polymer stmcture formed in the step growth polymerization (31) of novolac resins. [Pg.120]

The role that acid and base catalysts play can be quantitatively studied by kinetic techniques. It is possible to recognize several distinct types of catalysis by acids and bases. The term specie acid catalysis is used when the reaction rate is dependent on the equilibrium for protonation of the reactant. This type of catalysis is independent of the concentration and specific structure of the various proton donors present in solution. Specific acid catalysis is governed by the hydrogen-ion concentration (pH) of the solution. For example, for a series of reactions in an aqueous buffer system, flie rate of flie reaction would be a fimetion of the pH, but not of the concentration or identity of the acidic and basic components of the buffer. The kinetic expression for any such reaction will include a term for hydrogen-ion concentration, [H+]. The term general acid catalysis is used when the nature and concentration of proton donors present in solution affect the reaction rate. The kinetic expression for such a reaction will include a term for each of the potential proton donors that acts as a catalyst. The terms specific base catalysis and general base catalysis apply in the same way to base-catalyzed reactions. [Pg.229]

Notice that specific acid catalysis describes a situation in which the reactant is in equilibrium with regard to proton transfer, and proton transfer is not rate-determining. On the other hand, each case that leads to general acid catalysis involves proton transfer in the rate-determining step. Because of these differences, the study of rates as a function of pH and buffer concentrations can permit conclusions about the nature of proton-transfer processes and their relationship to the rate-determining step in a reaction. [Pg.230]

The hydration reaction has been extensively studied because it is the mechanistic prototype for many reactions at carbonyl centers that involve more complex molecules. For acetaldehyde, the half-life of the exchange reaction is on the order of one minute under neutral conditions but is considerably faster in acidic or basic media. The second-order rate constant for acid-catalyzed hydration of acetaldehyde is on the order of 500 M s . Acid catalysis involves either protonation or hydrogen bonding at the carbonyl oxygen. [Pg.450]

A mixed acetal of benzaldehyde, methanol, and salicylic acid has also been studied. It, too, shows a marked rate enhancement attributable to intramolecular general acid catalysis ... [Pg.490]

The acid-catalyzed hydrolysis of 2-alkoxy-2-phenyl-l,3-dioxolanes has been studied. The initial step is rate-determining under eertain eonditions and is deseribed by the rate law given below, whieh reveals general acid catalysis. [Pg.497]

Acid catalysis is an important kinetic phenomenon, and its study often requires the use of concentrated acid solutions, in which the conventional pH scale is not applicable. In sueh solutions (e.g., sulfuric acid-water mixtures covering the full range of compositions) the acid component simultaneously functions both as an acid and as a solvent thus, a medium effect is superimposed on the acidity effect. In this section we briefly describe the acidity function approach to coping with this problem. (A comparable approach can be taken to the study of highly... [Pg.446]

The author has been involved for quite a long time in the study of Lewis acid catalysis of 1,3-dipolar cycloaddition reactions. From his research group, a series of methodologies directed to the Lewis acid-mediated stereochemical and regiochem-ical control of 1,3-dipolar cycloaddition reactions has been reported this includes ... [Pg.248]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

Jamieson and McNeill [142] studied the degradation of poIy(vinyI acetate) and poly(vinyI chloride) and compared it with the degradation of PVC/PVAc blend. For the unmixed situation, hydrogen chloride evolution from PVC started at a lower temperature and a faster rate than acetic acid from PVAc. For the blend, acetic acid production began concurrently with dehydrochlorination. But the dehydrochlorination rate maximum occurred earlier than in the previous case indicating that both polymers were destabilized. This is a direct proof of the intermolecular nature of the destabilizing effect of acetate groups on chlorine atoms in PVC. The effects observed by Jamieson and McNeill were explained in terms of acid catalysis. Hydrochloric acid produced in the PVC phase diffused into the PVAc phase to catalyze the loss of acetic acid and vice-versa. [Pg.331]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

With 77 % aqueous acetic acid, the rates were found to be more affected by added perchloric acid than by sodium perchlorate (but only at higher concentrations than those used by Stanley and Shorter207, which accounts for the failure of these workers to observe acid catalysis, but their observation of kinetic orders in hypochlorous acid of less than one remains unaccounted for). The difference in the effect of the added electrolyte increased with concentration, and the rates of the acid-catalysed reaction reached a maximum in ca. 50 % aqueous acetic acid, passed through a minimum at ca. 90 % aqueous acetic acid and rose very rapidly thereafter. The faster chlorination in 50% acid than in water was, therefore, considered consistent with chlorination by AcOHCl+, which is subject to an increasing solvent effect in the direction of less aqueous media (hence the minimum in 90 % acid), and a third factor operates, viz. that in pure acetic acid the bulk source of chlorine ischlorineacetate rather than HOC1 and causes the rapid rise in rate towards the anhydrous medium. The relative rates of the acid-catalysed (acidity > 0.49 M) chlorination of some aromatics in 76 % aqueous acetic acid at 25 °C were found to be toluene, 69 benzene, 1 chlorobenzene, 0.097 benzoic acid, 0.004. Some of these kinetic observations were confirmed in a study of the chlorination of diphenylmethane in the presence of 0.030 M perchloric acid, second-order rate coefficients were obtained at 25 °C as follows209 0.161 (98 vol. % aqueous acetic acid) ca. 0.078 (75 vol. % acid), and, in the latter solvent in the presence of 0.50 M perchloric acid, diphenylmethane was approximately 30 times more reactive than benzene. [Pg.91]

Thus it can be seen that evidence for the A-l mechanism, even if one accepted that this followed from a linear rate coefficient-acidity function correlation, was scant. On the other hand, there have been a very large number of carefully documented studies in which general acid catalysis has been observed leading to the A-Se2 mechanism for the reaction, or it has been shown that the conclusions from an acidity function dependence are not rigorous. One such study has already been described above, and Satchell478 also found that in the detritiation of [4,6-3H2]-l,2,3-trimethoxybenzene by potassium bisulphate, dichloro- and tri-fluoroacetic acids, plots of log kl versus —H0 were linear with a slope of ca. 1.0... [Pg.208]

Finally, we should also exploit one more key experimental fact—the I activation barrier for the dissociation of the R-O bond in the protonated R-OH+R molecule is available from kinetic studies of the so-called 1 specific acid catalysis reaction. [Pg.163]

The combination of Lewis-acid catalysis and sc-COi has also been investigated. One of these studies involved the AlCls-catalyzed Diels Alder reaction of isoprene and maleic anhydride in sc-COi at 67 °C and at 74.5-78.5 bar [89]. The reaction rate was enhanced with respect to the uncatalyzed reaction and an unconcerted two-step mechanism was suggested [89]. [Pg.288]


See other pages where Acid catalysis studies is mentioned: [Pg.43]    [Pg.44]    [Pg.48]    [Pg.76]    [Pg.107]    [Pg.55]    [Pg.237]    [Pg.412]    [Pg.360]    [Pg.488]    [Pg.298]    [Pg.287]    [Pg.332]    [Pg.8]    [Pg.213]    [Pg.311]    [Pg.316]    [Pg.318]    [Pg.319]    [Pg.437]    [Pg.534]    [Pg.169]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Acid studies

Catalysis studies

© 2024 chempedia.info