Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equivalents acid-base

The stoichiometric calculations of Chapters 12 and 13 are based on the mole as the fundamental chemical unit in reactions. An alternative method of calculation utilizes the equivalent as a fundamental chemical unit. There are two kinds of equivalents, the type depending on the reaction in question we shall refer to them as acid-base equivalents (or simply as equivalents) and electron-transfer equivalents (or E-T equivalents). The concept of an equivalent is particularly useful when dealing with complex or unknown mixtures, or when working out the structure and properties of unknown compounds. In addition, it emphasizes a basic characteristic of all chemical reactions that is directly applicable to all types of titration analyses. [Pg.318]

The acid-base equivalent is defined as the weight (in grams) ef a substance that will provide, react with, or be equivalent to 1 mole of H+. us 1 mo e (98.1 g/mole) of H2S04 contains 2 moles ofH+ and its acid"base equivalent weight is... [Pg.318]

The terms normal and normality are defined and applied as they were for acid-base equivalents. Again, the unique property of normality is that, for any electron-transfer reaction, when the reducing agent has just exactly consumed the oxidizing agent,... [Pg.322]

As an adjective applied to metals base represents the opposite of noble, i.e. a base metal would be attacked by mineral acids, base exchange An old term used to describe the capacity of soils, zeolites, clays, etc. to exchange their cations (Na, K, Ca ) for an equivalent of other cations without undergoing structural change. An example of the general process of ion exchange. ... [Pg.52]

In the overview to this chapter we noted that the experimentally determined end point should coincide with the titration s equivalence point. For an acid-base titration, the equivalence point is characterized by a pH level that is a function of the acid-base strengths and concentrations of the analyte and titrant. The pH at the end point, however, may or may not correspond to the pH at the equivalence point. To understand the relationship between end points and equivalence points we must know how the pH changes during a titration. In this section we will learn how to construct titration curves for several important types of acid-base titrations. Our... [Pg.279]

Sketching an Acid—Base Titration Curve To evaluate the relationship between an equivalence point and an end point, we only need to construct a reasonable approximation to the titration curve. In this section we demonstrate a simple method for sketching any acid-base titration curve. Our goal is to sketch the titration curve quickly, using as few calculations as possible. [Pg.284]

It has been shown that for most acid-base titrations the inflection point, which corresponds to the greatest slope in the titration curve, very nearly coincides with the equivalence point. The inflection point actually precedes the equivalence point, with the error approaching 0.1% for weak acids or weak bases with dissociation constants smaller than 10 , or for very dilute solutions. Equivalence points determined in this fashion are indicated on the titration curves in figure 9.8. [Pg.287]

The most obvious sensor for an acid-base titration is a pH electrode.For example, Table 9.5 lists values for the pH and volume of titrant obtained during the titration of a weak acid with NaOH. The resulting titration curve, which is called a potentiometric titration curve, is shown in Figure 9.13a. The simplest method for finding the end point is to visually locate the inflection point of the titration curve. This is also the least accurate method, particularly if the titration curve s slope at the equivalence point is small. [Pg.290]

Earlier we noted that an acid-base titration may be used to analyze a mixture of acids or bases by titrating to more than one equivalence point. The concentration of each analyte is determined by accounting for its contribution to the volume of titrant needed to reach the equivalence points. [Pg.307]

Two useful characterization applications involving acid-base titrimetry are the determination of equivalent weight, and the determination of acid-base dissociation constants. [Pg.309]

Equivalent Weights Acid-base titrations can be used to characterize the chemical and physical properties of matter. One simple example is the determination of the equivalent weighf of acids and bases. In this method, an accurately weighed sample of a pure acid or base is titrated to a well-defined equivalence point using a mono-protic strong acid or strong base. If we assume that the titration involves the transfer of n protons, then the moles of titrant needed to reach the equivalence point is given as... [Pg.309]

Scale of Operation In an acid-base titration the volume of titrant needed to reach the equivalence point is proportional to the absolute amount of analyte present in the analytical solution. Nevertheless, the change in pH at the equivalence point, and thus the utility of an acid-base titration, is a function of the analyte s concentration in the solution being titrated. [Pg.311]

Accuracy When working with macro-major and macro-minor samples, acid-base titrations can be accomplished with relative errors of 0.1-0.2%. The principal limitation to accuracy is the difference between the end point and the equivalence point. [Pg.312]

In practice, however, any improvement in the sensitivity of an acid-base titration due to an increase in k is offset by a decrease in the precision of the equivalence point volume when the buret needs to be refilled. Consequently, standard analytical procedures for acid-base titrimetry are usually written to ensure that titrations require 60-100% of the buret s volume. [Pg.313]

Where Is the Equivalence Point In discussing acid-base titrations and com-plexometric titrations, we noted that the equivalence point is almost identical with the inflection point located in the sharply rising part of the titration curve. If you look back at Figures 9.8 and 9.28, you will see that for acid-base and com-plexometric titrations the inflection point is also in the middle of the titration curve s sharp rise (we call this a symmetrical equivalence point). This makes it relatively easy to find the equivalence point when you sketch these titration curves. When the stoichiometry of a redox titration is symmetrical (one mole analyte per mole of titrant), then the equivalence point also is symmetrical. If the stoichiometry is not symmetrical, then the equivalence point will lie closer to the top or bottom of the titration curve s sharp rise. In this case the equivalence point is said to be asymmetrical. Example 9.12 shows how to calculate the equivalence point potential in this situation. [Pg.337]

The scale of operations, accuracy, precision, sensitivity, time, and cost of methods involving redox titrations are similar to those described earlier in the chapter for acid-base and complexometric titrimetric methods. As with acid-base titrations, redox titrations can be extended to the analysis of mixtures if there is a significant difference in the ease with which the analytes can be oxidized or reduced. Figure 9.40 shows an example of the titration curve for a mixture of Fe + and Sn +, using Ce + as the titrant. The titration of a mixture of analytes whose standard-state potentials or formal potentials differ by at least 200 mV will result in a separate equivalence point for each analyte. [Pg.350]

An acid-base titration can be used to determine an analyte s equivalent weight, but cannot be used to determine its formula weight. Explain why. [Pg.363]

Potcntiomctric Titrations In Chapter 9 we noted that one method for determining the equivalence point of an acid-base titration is to follow the change in pH with a pH electrode. The potentiometric determination of equivalence points is feasible for acid-base, complexation, redox, and precipitation titrations, as well as for titrations in aqueous and nonaqueous solvents. Acid-base, complexation, and precipitation potentiometric titrations are usually monitored with an ion-selective electrode that is selective for the analyte, although an electrode that is selective for the titrant or a reaction product also can be used. A redox electrode, such as a Pt wire, and a reference electrode are used for potentiometric redox titrations. More details about potentiometric titrations are found in Chapter 9. [Pg.494]

The technique of IGC may be employed to obtain acid-base information, as suggested by Schultz and Lavielle [99], by using acid and base probe gases on a solid for which the alkane line has already been obtained. If acid-base interaction is involved in the adsorption, the retention volume should be greater than that corresponding to the dispersion force interaction alone, which should be the same as that of the equivalent alkane , i.e. the hypothetical alkane for which the value... [Pg.42]

Experimental pKa data suggests that simple alkyl groups all affeet acid-base reactivity in roughly the same way. What is more, this universal alkyl effect is roughly equivalent to the effect of a hydrogen atom. For example, the difference in pKa between water and ethanol is approximately the same as that between formic acid and propanoic acid (see table at right). [Pg.55]

Analogous, but slightly different, is the treatment of the acid-base equilibria and the basic hydrolysis rates of the phthalimids (19). In both of these cases, the two paths to the reaction site are equivalent, hence pi and po of Eq. (3) are equal, and the equation reduces to ... [Pg.253]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

The objective of the titration is to determine the point at which reaction is complete, called the equivalence point. This is reached when the number of moles of OH- added is exactly equal to the number of moles of acetic acid, HC O originally present To determine this point, a single drop of an acid-base indicator such as phenolphthalein is used. It should change color (colorless to pink) at the equivalence point. [Pg.84]

As pointed out in Chapter 4, an acid-base indicator is useful in determining the equivalence point of an acid-base titration. This is the point at which reaction is complete equivalent quantities of acid and base have reacted. If the indicator is chosen properly, the point at which it changes color (its end point) coincides with the equivalence point To understand how and why an indicator changes color, we need to understand the equilibrium principle involved. [Pg.391]

Acid-base indicator, 403-404q colors, 392-393 equivalence point and, 84 Acid-base reactions, 96-97q, 402q amino acids, 622-625 Brensted-Lowry model, 353-354 buffer systems, 383-391 equations for, 82-84 Lewis acid in, 410 Lewis base in, 410 types, 81-82... [Pg.681]


See other pages where Equivalents acid-base is mentioned: [Pg.312]    [Pg.318]    [Pg.319]    [Pg.365]    [Pg.148]    [Pg.312]    [Pg.318]    [Pg.319]    [Pg.365]    [Pg.148]    [Pg.288]    [Pg.288]    [Pg.311]    [Pg.313]    [Pg.320]    [Pg.322]    [Pg.331]    [Pg.172]    [Pg.399]    [Pg.250]    [Pg.58]    [Pg.26]    [Pg.23]    [Pg.68]    [Pg.771]    [Pg.326]    [Pg.442]   
See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.221 , Pg.222 , Pg.223 ]




SEARCH



© 2024 chempedia.info