Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylcholinesterase choline

Acetylcholine (indirectly phosphororganic pesticides in the ng/ml-range) Acetylcholinesterase Choline, acetic acid physiol, salt solution pH 7.2 Acetylcholine-Liquid membrane 10 2 10 4 M... [Pg.255]

F.N. Kok and V. Hasirci, Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosens. Bioelectron. 19, 661-665 (2004). [Pg.75]

In the following we attempt to describe the acetylcholinesterase/choline acetyltransferase enzyme system inside the neural synaptic cleft in a simple fashion see Figure 4.49. The complete neurocycle of the acetylcholine as a neurotransmitter is simulated in our model as a simple two-enzymes/two-compartments model. Each compartment is described as a constant-flow, constant-volume, isothermal, continuous stirred tank reactor (CSTR). The two compartments (I) and (II) are separated by a nonselective permeable membrane as shown in Figure 4.50. [Pg.223]

We have developed, solved, and analyzed an eight-dimensional model for a coupled acetylcholinesterase/choline acetyltransferase enzyme system. The complex dynamic characteristics, both stable and unstable, and the chaotic behavior of this IVP system have been investigated with some reference to acetylcholine neural transmission. [Pg.249]

Choline esters are simply choline bound to an acetyl derivative by an ester bond. The ester bond of acetylcholine and related drugs is hydrolyzed by enzymes known as cholinesterases (e.g., acetylcholinesterase). Choline esters are more or less sensitive to cholinesterase deactivation depending on their chemical structure. [Pg.24]

Acetylcholinesterase Choline oxidase pHEMA> Entrapment Covalent binding Ionic interactions Biosensor [104]... [Pg.968]

The effects of lead on endogenous enzymes involved in cholinergic metabolism are also uncertain. Sobotka et al. (1974) showed decreases in activity of acetylcholinesterase, while Carroll et al. (1977) found that acetylcholinesterase, choline acetyltransferase and choline phosphokinase were not altered by lead. However, Modak et al. (1975) demonstrated differential effects of acetylcholinesterase and choline acetyltransferase in discrete areas of brain lead treatment changed these enzymes in opposite directions. Acetylcholinesterase had significantly lower activity in the diencephalon,... [Pg.83]

Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilization of acetylcholinesterase-choline oxidase on a gold-platimmi bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates, and nerve agents. Biosens Bioelectron 25 832-838... [Pg.305]

Enzyme-Catalyzed Reactions Enzymes are highly specific catalysts for biochemical reactions, with each enzyme showing a selectivity for a single reactant, or substrate. For example, acetylcholinesterase is an enzyme that catalyzes the decomposition of the neurotransmitter acetylcholine to choline and acetic acid. Many enzyme-substrate reactions follow a simple mechanism consisting of the initial formation of an enzyme-substrate complex, ES, which subsequently decomposes to form product, releasing the enzyme to react again. [Pg.636]

While these functions can be a carried out by a single transporter isoform (e.g., the serotonin transporter, SERT) they may be split into separate processes carried out by distinct transporter subtypes, or in the case of acetylcholine, by a degrading enzyme. Termination of cholinergic neurotransmission is due to acetylcholinesterase which hydrolyses the ester bond to release choline and acetic acid. Reuptake of choline into the nerve cell is afforded by a high affinity transporter (CHT of the SLC5 gene family). [Pg.836]

Extracellular degradation removes acetylcholine, the neuropeptides and ATP. Acetylcholine is rapidly hydrolyzed to choline and acetate by acetylcholinesterase. The enzyme is localized in both the presynaptic and the postsynaptic cell membrane and splits about 10,000 molecules of acetylcholine per second. [Pg.1173]

Figure 6.2 Diagrammatic representation of a cholinergic synapse. Some 80% of neuronal acetylcholine (ACh) is found in the nerve terminal or synaptosome and the remainder in the cell body or axon. Within the synaptosome it is almost equally divided between two pools, as shown. ACh is synthesised from choline, which has been taken up into the nerve terminal, and to which it is broken down again, after release, by acetylcholinesterase. Postsynaptically the nicotinic receptor is directly linked to the opening of Na+ channels and can be blocked by compounds like dihydro-jS-erythroidine (DH/IE). Muscarinic receptors appear to inhibit K+ efflux to increase cell activity. For full details see text... Figure 6.2 Diagrammatic representation of a cholinergic synapse. Some 80% of neuronal acetylcholine (ACh) is found in the nerve terminal or synaptosome and the remainder in the cell body or axon. Within the synaptosome it is almost equally divided between two pools, as shown. ACh is synthesised from choline, which has been taken up into the nerve terminal, and to which it is broken down again, after release, by acetylcholinesterase. Postsynaptically the nicotinic receptor is directly linked to the opening of Na+ channels and can be blocked by compounds like dihydro-jS-erythroidine (DH/IE). Muscarinic receptors appear to inhibit K+ efflux to increase cell activity. For full details see text...
Released ACh is broken down by membrane-bound acetylcholinesterase, often called the true or specific cholinesterase to distinguish it from butyrylcholinesterase, a pseudo-or non-specific plasma cholinesterase. It is an extremely efficient enzyme with one molecule capable of dealing with something like 10000 molecules of ACh each second, which means a short life and rapid turnover (100 ps) for each molecule of ACh. It seems that about 50% of the choline freed by the hydrolysis of ACh is taken back into the nerve. There is a wide range of anticholinesterases which can be used to prolong and potentiate the action of ACh. Some of these, such as physostigmine, which can cross the blood-brain barrier to produce central effects and neostigmine, which does not readily... [Pg.121]

ACh is metabolised extraneuronally by the enzyme acetylcholinesterase, to reform precursor choline and acetate. Blocking its activity with various anticholinesterases has been widely investigated and some improvement in memory noted. Such studies have invariably used reversible inhibition because of the toxicity associated with long-term irreversible inhibition of the enzyme. Physostigmine was the pilot drug. It is known to improve memory in animals and some small effects have been seen in humans (reduces number of mistakes in word-recall tests rather than number of words recalled), but it really needs to be given intravenously and has a very short half-life (30 min). [Pg.386]

Crespo C., Brinon J.G., Porteros A., Arevalo R., et al. (1999). Distribution of acetylcholinesterase and choline acetyltransferase in the main and accessory olfactory bulbs of the hedgehog (Erinaceus europaeus). J Comp Neurol 403, 53-67. [Pg.199]

Acetylcholine, which is set free from vesicles present in the neighbourhood of the presynaptic membrane, is transferred into the recipient cell through this channel (Fig. 6.25). Once transferred it stimulates generation of a spike at the membrane of the recipient cell. The action of acetylcholine is inhibited by the enzyme, acetylcholinesterase, which splits acetylcholine to choline and acetic acid. [Pg.474]

The primary mechanism used by cholinergic synapses is enzymatic degradation. Acetylcholinesterase hydrolyzes acetylcholine to its components choline and acetate it is one of the fastest acting enzymes in the body and acetylcholine removal occurs in less than 1 msec. The most important mechanism for removal of norepinephrine from the neuroeffector junction is the reuptake of this neurotransmitter into the sympathetic neuron that released it. Norepinephrine may then be metabolized intraneuronally by monoamine oxidase (MAO). The circulating catecholamines — epinephrine and norepinephrine — are inactivated by catechol-O-methyltransferase (COMT) in the liver. [Pg.99]

Acetylcholine is formed from acetyl CoA (produced as a byproduct of the citric acid and glycolytic pathways) and choline (component of membrane lipids) by the enzyme choline acetyltransferase (ChAT). Following release it is degraded in the extracellular space by the enzyme acetylcholinesterase (AChE) to acetate and choline. The formation of acetylcholine is limited by the intracellular concentration of choline, which is determined by the (re)uptake of choline into the nerve ending (Taylor Brown, 1994). [Pg.26]

Finally, some neurotransmitters, like acetylcholine, are inactivated solely by a catabolic enzyme. Acetylcholinesterase rapidly breaks down the neurotransmitter to acetate and choline, and the choline is then actively transported into the presynaptic... [Pg.34]

C. Cremisini, A.D. Sario, J. Mela, R. Pilloton, and G. Paleshci, Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal. Chim. Acta 311, 273—280 (1995). [Pg.74]

The above-mentioned system has also been used for the indirect CL determination of some carbamate and organophosphorous pesticides that inhibit acetylcholinesterase. Acetylcholinesterase in solution or immobilized on methacrylate beads is coupled to immobilized choline oxidase and peroxidase [46],... [Pg.578]

In this system, choline formed by acetylcholinesterase is oxidized by choline oxidase and the hydrogen peroxide produced is determined using the luminol/peroxidase CL reaction. The sensor has been used for the analysis of Paraoxon and Aldicarb pesticides, with detection limits of 0.75 pg/L and 4 pg/ L, respectively. Recoveries in the range of 81-108% in contaminated samples of soils and vegetables were obtained. [Pg.578]

The postsynaptic membrane opposite release sites is also highly specialized, consisting of folds of plasma membrane containing a high density of nicotinic ACh receptors (nAChRs). Basal lamina matrix proteins are important for the formation and maintenance of the NMJ and are concentrated in the cleft. Acetylcholinesterase (AChE), an enzyme that hydrolyzes ACh to acetate and choline to inactivate the neurotransmitter, is associated with the basal lamina (see Ch. 11). [Pg.172]

Misawa, M., J. Doull, P.A. Kitos, and E.M. Uyeki. 1981. Teratogenic effects of cholinergic insecticides in chick embryos. I. Diazinon treatment on acetylcholinesterase and choline acetyltransferase activities. Toxicol. Appl. Pharmacol. 57 20-29. [Pg.984]

In contrast to acetylcholinesterase, cholinesterase (acylcholine acyl-hydrolase, butyrylcholinesterase, EC 3.1.1.8) exhibits relatively unspecific esterase activity toward choline esters, with abroad specificity relative to the size of the acyl group. The enzyme is synthesized in the liver and can be found in smooth muscle, adipocytes, and plasma. Its physiological role remains partly obscure, but there is evidence that it is present transiently in the embryonic nervous system, where it is replaced in later stages of development by acetylcholinesterase. It has, therefore, been suggested that cholinesterase functions as an embryonic acetylcholinesterase. [Pg.54]


See other pages where Acetylcholinesterase choline is mentioned: [Pg.578]    [Pg.578]    [Pg.662]    [Pg.517]    [Pg.404]    [Pg.182]    [Pg.74]    [Pg.30]    [Pg.100]    [Pg.3]    [Pg.110]    [Pg.20]    [Pg.484]    [Pg.577]    [Pg.192]    [Pg.193]    [Pg.195]    [Pg.419]    [Pg.295]    [Pg.417]   
See also in sourсe #XX -- [ Pg.176 , Pg.177 , Pg.179 ]




SEARCH



Acetylcholinesterase

Acetylcholinesterases

© 2024 chempedia.info