Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetonitrile, reduction

In acetonitrile, reduction potentials have been determined for 22 substituted 1,2,4-triazines.347 3,5-Disubstituted and 3,5,6-trisubstituted triazines show reversible behavior, with the formation of the corresponding anion-radicals the anion-radicals from 5-unsubstituted triazines are less stable and react probably by dimerization. [Pg.317]

The dione (41), obtained from 2-methylcyclopentane-l,3-dione, undergoes asymmetric cyclization to yield (42) (82% yield, 86% optical purity) with L-phenylalanine in acetonitrile. Reduction with sodium borohydride to (43) followed by catalytic reduction gave (45) (major product), (46), and, unexpectedly, compound (44)... [Pg.323]

The origin of the amino group in product (165) has not been fully established, but there is evidence for a photoamination pathway involving acetonitrile. Reductive decyanation on irradiation of pyrazinedicarbonitriles is the result of electron transfer from a tertiary amino group. Photochemically induced hydrogen-... [Pg.399]

Attempted intermolecular coupling of ketones and nitriles under conditions similar to those used for intramolecular coupling led to mixtures of two types of ketone-nitrile coupling products and alcohols resulting from ketone electroreduction. Product selectivity could be changed altering nitrile/solvent (2-propanol or ethanol) composition. Some results for cyclohexanone/acetonitrile reductions are shown in Scheme 27. [Pg.611]

When the reduction process is performed in aqueous (1.5%) acetonitrile, reduction of the quinone units is followed by protonation with formation of the corresponding hydroquinone. Protonation of the reduced species amounts to its stabilization. The oxidation peak of the hydroquinone moiety is in fact at --+0.96 V under the above conditions. Therefore, electron-transfer quenching from the hydroquinone to the excited complex is endergonic (AG-0.2 V) and its rate cannot compete with the luminescence decay of the excited state (Fig. 13). [Pg.24]

A variation on the Ritter reaction, suitable for the transformation of primary secondary, and tertiary alcohols to acetamides, involves thionyl chloride in acetonitrile. Reduction of the crude products (Scheme 17) with zinc-acetic acid converts any chloroacetamide product into the acetamide, and overall yields are moderate to good. [Pg.167]

Ethylamine, monoethylamine, CH3CH2NH2-B.p. 19 C. Prepared by reduction of acetonitrile or by heating ethyl chloride with alcoholic ammonia under pressure. It is a strong base and will displace ammonia from ammonium salts. Forms a crystalline hydrochloride and also crystalline compounds with various metallic chlorides. [Pg.166]

MejSiCI - Nal - CH3CN as an Efficient and Practical Reducing Agent for Benzoic Alcohols. A typical procedure for the present reduction is as follows To a mixture of MejSiCI (1.54 ml, 12 mmol), Nal (1.8 g, 12 mmol), and acetonitrile (0.6 ml, 12 mmol) was added a solution of 1-phenylethanol (244 mg, 2 mmol) in hexane (2 ml). The mixture was stirred for 24 h at room temperature. Dilution with water, extraction with ether and subsequent isolation process gave ethylbenzene (158 mg) with sufficient purity in 75% yield. ... [Pg.204]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

Electron donor molecules are oxidized in solution easily. Eor example, for TTE is 0.33V vs SCE in acetonitrile. Similarly, electron acceptors such as TCNQ are reduced easily. TCNQ exhibits a reduction wave at — 0.06V vs SCE in acetonitrile. The redox potentials can be adjusted by derivatizing the donor and acceptor molecules, and this tuning of HOMO and LUMO levels can be used to tailor charge-transfer and conductivity properties of the material. Knowledge of HOMO and LUMO levels can also be used to choose materials for efficient charge injection from metallic electrodes. [Pg.240]

New Synthesis. Many attempts have been made to synthesize oxaUc acid by electrochemical reduction of carbon dioxide in either aqueous or nonaqueous electrolytes (53—57). For instance, oxaUc acid is prepared from CO2 as its Zn salt in an undivided ceU with Zn anodes and stainless steel cathodes ia acetonitrile containing (C4H2)4NC104 and current efficiency of >90% (53). Micropilot experiments and a process design were also made. [Pg.460]

Uranium pentabromide [13775-16-1], UBr, is unstable toward reduction and the pentaiodide is unknown. Two synthetic methods utilized for the production of UBr involve the oxidation of uranium tetrabromide [13470-20-7], UBr, by Br2 or by bromination of uranium turnings with Br2 in acetonitrile. The metastable pentabromide is isostmctural with the pentachloride, being dimeric with edge-sharing octahedra U2Br2Q. [Pg.332]

The synthesis which forms the basis of production at Hoffmaim-La Roche (Fig. 5) proceeds via the pyrimidinenitrile [698-29-3] (26) made from malononittile, trimethylorthoformate, ammonia, and acetonitrile (42,43). High pressure catalytic reduction of the nitrile furnishes diamine (16). The overall sequence is short, highly efficient, and generates almost no waste. However, malononittile is a relatively expensive and ha2ardous three-carbon source. [Pg.89]

Irradiation of 3,5-disubstituted isoxazoles in alcoholic solvents gave reaction products such as acetals incorporating the reaction solvent. The use of triethylamine in acetonitrile media produced ketene-aminals by reductive ring cleavage. The reductive ring cleavage product was also obtained by irradiation of the isoxazole in alcohol in the presence of copper(II) salts (Scheme 3) (76JCS(P1)783). [Pg.13]

In order to avoid competitive bimolecular photoreactions such as ketone reduction by hydrogen abstraction, poor hydrogen donating solvents are recommended (acetonitrile, acetic acid, tertiary alcohols). In those cases where ketene trapping is desired, solvents must also be miscible with water or other protic nucleophiles. [Pg.301]

An earlier report (126) which assigned the irons configuration to the enamine (175) derived from the cyanamine (176) upon reaction with potassium amide in liquid ammonia has been questioned by Munk and Kim (725). They also have doubts about the structures (177 and 178) proposed for the products obtained by the reduction of acetonitrile with sodium (727). [Pg.94]

When equimolar quantities of 80a and its dication 110 are combined in acetonitrile, single electron transfer occurs and the coproportionation product was obtained (95TL2741).Tliis deeply red-colored, air-sensitive radical cation 111 showed a strong ESR signal (g = 2.0034). On the other hand, the excellent electron donor 80a could be prepared by electrolytic reduction starting from 110. It was necessary to carry out the reduction with scrupulous exclusion of oxygen. Tlius, the electrolysis of 110 at -1.10 V initially gave rise to an intense red color, which was presumably due to the formation of 111. Upon further reduction, the red color faded and the tetraaza-fulvalene 80a was isolated at a 62% yield (Scheme 45). [Pg.156]

Condensation of the anion obtained on reaction of acetonitrile with sodium amide, with o-chlorobenzophenone (36), affords the hydroxynitrile, 37. Catalytic reduction leads to the corresponding amino alcohol (note that the benzhydryl alcohol is not hydrogenolyzed). Reductive alkylation with formaldehyde and hydrogen in the presence of Raney nickel gives the antitussive a-gent, chlorphedianol (39). °... [Pg.46]

Soderberg and coworkers have developed a palladium-phosphine-catalyzed reductive iV-het-eroannuladon of 2-nitrostyrenes forming indoles in good yields For example, reaction of 6-bromo-2-nitrostyrene with carbon monoxide in the presence of a catalytic amount of palladium diacetate (6 mol% and triphenylphosphine 124 mol% in acetonitrile at 30 gives 4-bromoindole in 86% yield fEq 10 62 Several functional groups, such as esters, ethers, bromides, tnflates, and additional nitro groups, have been shown to be compatible with the reaction conditions... [Pg.343]

The thermal condensetion of p-benzyloxyphenylacetic acid and of 3-methoxy-4-hydroxy-phenethylamine occurs and gives, with a yield of 86% to 92%, the N-(3-methoxy4-hydroxy-phenethyl-p-benzyloxyphenylacetamide from this latter, by cyclization according to Bischler-Napieralski with phosphorus oxychloride in acetonitrile, followed by reduction with sodium borohydride, there is obtained with a yield of 75% to 80% the 1-(p-benzyloxybenzyl)-6-meth-oxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline, which is methylated with formaldehyde and formic acid giving 1 (p-benzyloxybenzyl)-2-methyl-6-methoxy-7-hydroxy-1,2,3,4-tetrahydro-isoquinoline with a yieid of 90%. [Pg.727]

The addition of co-solvents to ionic liquids can result in dramatic reductions in the viscosity without alteration of the cations or anions in the system. The haloaluminate ionic liquids present a challenge, due to the reactivity of the ionic liquid. Nonetheless, several compatible co-solvents including benzene, dichloromethane, and acetonitrile have been investigated [33-37]. The addition of as little as 5 wt. % acetonitrile or 15 wt. % benzene or methylene chloride was able to reduce the... [Pg.64]


See other pages where Acetonitrile, reduction is mentioned: [Pg.182]    [Pg.410]    [Pg.339]    [Pg.147]    [Pg.182]    [Pg.809]    [Pg.147]    [Pg.327]    [Pg.3601]    [Pg.80]    [Pg.796]    [Pg.182]    [Pg.410]    [Pg.339]    [Pg.147]    [Pg.182]    [Pg.809]    [Pg.147]    [Pg.327]    [Pg.3601]    [Pg.80]    [Pg.796]    [Pg.349]    [Pg.224]    [Pg.246]    [Pg.270]    [Pg.474]    [Pg.164]    [Pg.332]    [Pg.377]    [Pg.265]    [Pg.72]    [Pg.98]    [Pg.970]    [Pg.511]    [Pg.140]    [Pg.210]    [Pg.28]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.467 ]




SEARCH



© 2024 chempedia.info