Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid chemical properties

The important chemical properties of acetyl chloride, CH COCl, were described ia the 1850s (10). Acetyl chloride was prepared by distilling a mixture of anhydrous sodium acetate [127-09-3J, C2H202Na, and phosphorous oxychloride [10025-87-3] POCl, and used it to interact with acetic acid yielding acetic anhydride. Acetyl chloride s violent reaction with water has been used to model Hquid-phase reactions. [Pg.81]

Chemical Properties. Under slightly acidic or basic conditions at room temperature, acetate and triacetate fibers are resistant to chlorine bleach at the concentrations normally used in laundering. [Pg.294]

Formic acid exhibits many of the typical chemical properties of the aHphatic carboxyHc acids, eg, esterification and amidation, but, as is common for the first member of an homologous series, there are distinctive differences in properties between formic acid and its higher homologues. The smaller inductive effect of hydrogen in comparison to an alkyl group leads, for example, to formic acid = 3.74) being a considerably stronger acid than acetic acid... [Pg.503]

Chemical Properties. Trimethylpentanediol, with a primary and a secondary hydroxyl group, enters into reactions characteristic of other glycols. It reacts readily with various carboxyUc acids and diacids to form esters, diesters, and polyesters (40). Some organometaUic catalysts have proven satisfactory for these reactions, the most versatile being dibutyltin oxide. Several weak bases such as triethanolamine, potassium acetate, lithium acetate, and borax are effective as stabilizers for the glycol during synthesis (41). [Pg.373]

The function of Jisper Uis fermentation appears to be primarily the breakdown of protein and polysaccharides by secreted proteases and amylases. Replacement oiPispergillis by chemical or enzymatic hydrolysis has no major impact on the organoleptic properties of the sauce. Likewise, inoculation with a pure culture of Ixictobacillus delbrueckii to carry out the acetic acid fermentation produces a normal product. The S. rouxii and Toru/opsis yeasts, however, are specifically required for proper flavor development. [Pg.393]

PZN-PT, and YBa2Cug02 g. For the preparation of PZT thin films, the most frequently used precursors have been lead acetate and 2irconium and titanium alkoxides, especially the propoxides. Short-chain alcohols, such as methanol and propanol, have been used most often as solvents, although there have been several successful investigations of the preparation of PZT films from the methoxyethanol solvent system. The use of acetic acid as a solvent and chemical modifier has also been reported. Whereas PZT thin films with exceUent ferroelectric properties have been prepared by sol-gel deposition, there has been relatively Httle effort directed toward understanding solution chemistry effects on thin-film properties. [Pg.346]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)... Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)...
The effect of incorporating p-hydroxybenzoic acid (I) into the structures of various unsaturated polyesters synthesised from polyethylene terephthalate (PET) waste depolymerised by glycolysis at three different diethylene glycol (DEG) ratios with Mn acetate as transesterification catalyst, was studied. Copolyesters of PET modified using various I mole ratios showed excellent mechanical and chemical properties because of their liquid crystalline behaviour. The oligoesters obtained from the twelve modified unsaturated polyesters (MUP) were reacted with I and maleic anhydride, with variation of the I ratio with a view to determining the effect on mechanical... [Pg.31]

Fig. 1.12 (A) Increase in surface plasmon ab- and from mixtures with lower chitosan concen-sorptionasAu nanoparticles are produced from a tration (ii) or lower HAuCI4 amount (iii) six reaction mixture containing 1 % chitosan, 1 % different self-sustained nanocomposite films acetic acid and 0.01 % tetrachloroauric (III) acid showing the control over the optical properties. (HAuCU) (B) shiftofsurface plasmon absorption Reprinted with permission from [164], 2004, for films prepared from the previous mixture (i), American Chemical Society. Fig. 1.12 (A) Increase in surface plasmon ab- and from mixtures with lower chitosan concen-sorptionasAu nanoparticles are produced from a tration (ii) or lower HAuCI4 amount (iii) six reaction mixture containing 1 % chitosan, 1 % different self-sustained nanocomposite films acetic acid and 0.01 % tetrachloroauric (III) acid showing the control over the optical properties. (HAuCU) (B) shiftofsurface plasmon absorption Reprinted with permission from [164], 2004, for films prepared from the previous mixture (i), American Chemical Society.
The red and orange forms of RhCl[P(C6H5)3]3 have apparently identical chemical properties the difference is presumably due to different crystalline forms, and possibly bonding in the solid. The complex is soluble in chloroform and methylene chloride (dichloromethane) to about 20 g./l. at 25°. The solubility in benzene or toluene is about 2 g./l. at 25° but is very much lower in acetic acid, acetone, and other ketones, methanol, and lower aliphatic alcohols. In paraffins and cyclohexane, the complex is virtually insoluble. Donor solvents such as pyridine, dimethyl sulfoxide, or acetonitrile dissolve the complex with reaction, initially to give complexes of the type RhCl[P(C6H6)3]2L, but further reaction with displacement of phosphine may occur. [Pg.70]

A number of carboxylic acids other than acetic were investigated as solvents or promoters. All of these acids which were stable to reaction conditions were found to be effective in promoting glycol ester production (e.g., propionic, pivalic, benzoic, etc.). However, other Br nsted acids of non-carboxylic nature were not found to be effective promoters. Thus penta-chlorophenol, although it has a pKa value (4.82) very close to that of acetic acid (4.76), is not a comparable promoter (Table I, reaction 13). Likewise, phosphoric acid (pK 2.15) is not an effective solvent or co-solvent with acetic acid (Table I, reaction 8). Experiments with lower concentrations of these acids in sulfolane solvent also showed that carboxylic acids are unique in promoting glycol formation. The promoter function of carboxylic acids thus appears not to be dependent (only) upon their acidity, but on some other chemical or structural property. [Pg.216]

Numerous chemical intermediates are oxygen rich. Methanol, acetic acid and ethylene glycol show a O/C atomic ratio of 1, as does biomass. Other major chemicals intermediates show a lower O/C ratio, typically between 1/3 and 2/3. This holds for instance for propene and butene glycols, ethanol, (meth)acrylic acids, adipic acid and many others. The presence of some oxygen atoms is required to confer the desired physical and chemicals properties to the product. Selective and partial deoxygenation of biomass may represent an attractive and competitive route compared with the selective and partial oxidation of hydrocarbon feedstock. [Pg.28]

What chemical property does acetic acid and phthalic acid have in common ... [Pg.271]


See other pages where Acetic acid chemical properties is mentioned: [Pg.660]    [Pg.248]    [Pg.207]    [Pg.312]    [Pg.116]    [Pg.309]    [Pg.463]    [Pg.483]    [Pg.331]    [Pg.314]    [Pg.315]    [Pg.204]    [Pg.616]    [Pg.231]    [Pg.202]    [Pg.285]    [Pg.275]    [Pg.225]    [Pg.99]    [Pg.75]    [Pg.11]    [Pg.198]    [Pg.189]    [Pg.189]    [Pg.1030]    [Pg.487]    [Pg.101]    [Pg.225]    [Pg.111]    [Pg.44]    [Pg.4]    [Pg.311]    [Pg.317]    [Pg.739]    [Pg.967]    [Pg.781]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Acidizing chemicals

Chemic acid

Chemicals acetic acid

© 2024 chempedia.info