Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetal aldehyde protecting group

As with aldehydes, production of ketones by nonredox processes is not a common synthetic approach. Ketone derivatives having the same oxidation level are usually produced from ketones themselves. Several examples of enol and acetal ketone derivatives are shown below. All are prepared from ketones, all can be readily hydrolyzed back to the ketone in the presence of acidic water, and, with the exception of vinyl acetates, all are very stable to strong bases and nucleophiles. Acetals are often used as ketone (and aldehyde) protecting groups while enol derivatives are versatile synthetic intermediates. [Pg.196]

Key Mechanism 18-6 Formation of Acetals 856 Problem-Solving Strategy Proposing Reaction Mechanisms 858 18-18 Use of Acetals as Protecting Groups 860 18-19 Oxidation of Aldehydes 861... [Pg.18]

Hydrates, hemiacetals, acetals, and protecting groups 17-9 Addition of Amines to Aldehydes and Ketones... [Pg.158]

The ability to convert a protective group to another functional group directly without first performing a deprotection is a potentially valuable transformation. Silyl-protected alcohols have been converted directly to aldehydes, ketones, bro-mides, acetates, and ethers without first liberating the alcohol in a prior deprotection step. [Pg.87]

A review discusses the condensation of aldehydes and ketones with glycerol to give 1,3-dioxanes and 1,3-dioxolanes. The chemistry of 0 0 and 0 S acetals has been reviewed, and a recent monograph discusses this area of protective groups in a didactic sense. ... [Pg.307]

Acetals are useful because they can act as protecting groups for aldehydes and ketones in the same way that trimethylsilyl ethers act as protecting groups for alcohols (Section 17.8). As we saw previously, it sometimes happens that one functional group interferes with intended chemistry elsewhere... [Pg.717]

Acetal (Section 19.10) A functional group consisting of two -OR groups bonded to the same carbon, R2C(OR )2-Acetals are often used as protecting groups for ketones and aldehydes. [Pg.1234]

Protective Groups for Diols. Diols represent a special case in terms of applicable protecting groups. 1,2- and 1,3-diols easily form cyclic acetals with aldehydes and ketones, unless cyclization is precluded by molecular geometry. The isopropylidene derivatives (also called acetonides) formed by reaction with acetone are a common example. [Pg.266]

Carbonyl compounds react with thiols, RSH, to form hemi-thioacetals and thioacetals, rather more readily than with ROH this reflects the greater nucleophilicity of sulphur compared with similarly situated oxygen. Thioacetals offer, with acetals, differential protection for the C=0 group as they are relatively stable to dilute acid they may, however, be decomposed readily by H20/HgCl2/CdC03. It is possible, using a thioacetal, to reverse the polarity of the carbonyl carbon atom in an aldehyde thereby converting this initially electrophilic centre into a nucleophilic one in the anion (31) ... [Pg.211]

Nitrophenyl)ethylene glycol was used to protect simple aldehydes and ketones, as well as some steroids. Acetals were prepared under acid catalysis, leading, in the case of chiral carbonyl compounds to diaste-reoisomers. The photochemical removal of the protecting group was in several instances complicated by the instability of some carbonyl derivatives to irradiation at 350 nm otherwise, yields were in the range of 83-90% (see Scheme 19). [Pg.195]

Olefination of the Aldehyde 178 using a stabilized Wittig reagent followed by protecting group chemistry at the lower branch and reduction of the a,p-unsaturated ester afforded the allylic alcohol 179 (Scheme 29). The allylic alcohol 179 was then converted into an allylic chloride and the hydroxyl function at the lower branch was deprotected and subsequently oxidized to provide the corresponding aldehyde 161 [42]. The aldehyde 161 was treated with trimethylsilyl cyanide to afford the cyanohydrin that was transformed into the cyano acetal 180. The decisive intramolecular alkylation was realized by treatment of the cyano acetal 180 with sodium bis(trimethylsi-lyl)amide. Subsequent treatment of the alkylated cyano acetal 182 with acid (to 183) and base afforded the bicyclo[9.3.0]tetradecane 184. [Pg.109]

The use of an acetal to protect an aldehyde group from oxidation. [Pg.150]

Cyclic acetals are useful and common protecting groups for aldehydes and ketones, especially during the course of a total synthesis [8]. The successful synthesis of acetals frequently relies on the removal of water, a by-product of the reaction between the carbonyl compound and the corresponding diol. A Dean-Stark trap is often used for the removal of water as an azeotrope with benzene, but this method is not suitable for small-scale reactions. In addition, the highly carcinogenic nature of benzene makes it an undesirable solvent. Many of the reported catalysts for acetal synthesis such as p-toluenesulfonic acid and boron trifluoride etherate are toxic and corrosive. [Pg.55]

Acyclic acetals are simple protecting groups for aldehydes and ketones, and we have previously reported their synthesis catalyzed by Bi(OTf)3 [104]. Acyclic acetals can also be converted to other useful functional groups. For example, allylation of acyclic acetals to give homoallyl ethers has been well investigated, and we have reported a Bi(OTf)3-catalyzed method for the same [105]. The success of Bi(OTf)3-catalyzed formation and allylation of acyclic acetals prompted us to develop a one-pot method for the synthesis of homoallyl ethers from aldehydes, catalyzed by bismuth triflate. A one-pot process saves steps by eliminating the need for isolation of the intermediate and thus minimizes waste. Three one-pot procedures for the synthesis of homoallyl ethers were developed [106]. [Pg.58]


See other pages where Acetal aldehyde protecting group is mentioned: [Pg.59]    [Pg.221]    [Pg.788]    [Pg.362]    [Pg.177]    [Pg.145]    [Pg.296]    [Pg.736]    [Pg.650]    [Pg.670]    [Pg.702]    [Pg.1182]    [Pg.1209]    [Pg.1243]    [Pg.526]    [Pg.376]    [Pg.265]    [Pg.16]    [Pg.222]    [Pg.236]    [Pg.323]    [Pg.230]    [Pg.97]    [Pg.882]    [Pg.822]    [Pg.260]    [Pg.294]    [Pg.66]    [Pg.835]   
See also in sourсe #XX -- [ Pg.582 ]




SEARCH



1 aldehyde protection aldehydes

Acetal group

Acetals, protection

Acetate groups

Acetic aldehyde

Acetous group

Aldehyde acetals

Aldehydes acetalization

Aldehydes acetate

Aldehydes, protection

Aldehydic Group

Protecting groups acetals

Protective groups acetal

© 2024 chempedia.info