Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accumulation equilibrium

Among the complications that can interfere with this conclusion is the possibility that the polymer becomes insoluble beyond a critical molecular weight or that the low molecular weight by-product molecules accumulate as the viscosity of the mixture increases and thereby shift some equilibrium to favor reactants. Note that we do not express reservations about the effect of increasing viscosity on the mobility of the polymer molecules themselves. Apparently it is not the migration of the center of mass of the molecule as a whole that determines the reactivity but, rather, the mobility of the chain ends which carry the reactive groups. [Pg.279]

Hundreds of metabohc reac tions take place simultaneously in cells. There are branched and parallel pathways, and a single biochemical may participate in sever distinct reactions. Through mass action, concentration changes caused by one reac tion may effect the kinetics and equilibrium concentrations of another. In order to prevent accumulation of too much of a biochemical, the product or an intermediate in the pathway may slow the production of an enzyme or may inhibit the ac tivation of enzymes regulating the pathway. This is termed feedback control and is shown in Fig. 24-1. More complicated examples are known where two biochemicals ac t in concert to inhibit an enzyme. As accumulation of excessive amounts of a certain biochemical may be the key to economic success, creating mutant cultures with defective metabolic controls has great value to the produc tion of a given produc t. [Pg.2133]

Adsorption — An important physico-chemical phenomenon used in treatment of hazardous wastes or in predicting the behavior of hazardous materials in natural systems is adsorption. Adsorption is the concentration or accumulation of substances at a surface or interface between media. Hazardous materials are often removed from water or air by adsorption onto activated carbon. Adsorption of organic hazardous materials onto soils or sediments is an important factor affecting their mobility in the environment. Adsorption may be predicted by use of a number of equations most commonly relating the concentration of a chemical at the surface or interface to the concentration in air or in solution, at equilibrium. These equations may be solved graphically using laboratory data to plot "isotherms." The most common application of adsorption is for the removal of organic compounds from water by activated carbon. [Pg.163]

Nevertheless, as response data have accumulated and the nature of the porous deformation problems has crystallized, it has become apparent that the study of such solids has forced overt attention to issues such as lack of thermodynamic equilibrium, heterogeneous deformation, anisotrophic deformation, and inhomogeneous composition—all processes that are present in micromechanical effects in solid density samples but are submerged due to continuum approaches to mechanical deformation models. [Pg.50]

As the titration begins, mostly HAc is present, plus some H and Ac in amounts that can be calculated (see the Example on page 45). Addition of a solution of NaOH allows hydroxide ions to neutralize any H present. Note that reaction (2) as written is strongly favored its apparent equilibrium constant is greater than lO As H is neutralized, more HAc dissociates to H and Ac. As further NaOH is added, the pH gradually increases as Ac accumulates at the expense of diminishing HAc and the neutralization of H. At the point where half of the HAc has been neutralized, that is, where 0.5 equivalent of OH has been added, the concentrations of HAc and Ac are equal and pH = pV, for HAc. Thus, we have an experimental method for determining the pV, values of weak electrolytes. These p V, values lie at the midpoint of their respective titration curves. After all of the acid has been neutralized (that is, when one equivalent of base has been added), the pH rises exponentially. [Pg.48]

The hydrocarbons in some altered form migrate from the source beds through other more porous and permeable beds to eventually accumulate in a rock called the reservoir rock. The initially altered (i.e., within the source beds) organic material may continue to alter as the material migrates. The hydrocarbon movement is probably the result of hydrodynamic pressure and gravity forces. As the source beds are compacted by increased burial pressures, the water and altered organic material are expelled. Water movement carries the hydrocarbons from the source beds into the reservoir, where the hydrocarbon establishes a position of equilibrium for the hydrodynamic and structural conditions [26-29]. [Pg.244]

Otherwise it has been shown that the accumulation of electrolytes by many cells runs at the expense of cellular energy and is in no sense an equilibrium condition 113) and that the use of equilibrium thermodynamic equations (e.g., the Nemst-equation) is not allowed in systems with appreciable leaks which indicate a kinetic steady-state 114). In addition, a superposition of partial current-voltage curves was used to explain the excitability of biological membranes112 . In interdisciplinary research the adaptation of a successful theory developed in a neighboring discipline may be beneficial, thus an attempt will be made here, to use the mixed potential model for ion-selective membranes also in the context of biomembrane surfaces. [Pg.237]

In fad the aconitase enzyme in A. niger is active even when dtric add is accumulating. This aconitase, if allowed to come to equilibrium, yields 90% dtrate, 3% ris-aconitate ferrous ions 7% isocitrate. To lower the activity of the enzyme, ferrous ions (essential for... [Pg.127]

In connection with the thermodynamic state of water in SAH, it is appropriate to consider one more question, i.e., their ability to accumulate water vapor contained in the atmosphere and in the space of soil pores. It is clear that this possibility is determined by the chemical potential balance of water in the gel and in the gaseous phase. In particular, in the case of saturated water vapor, the equilibrium swelling degree of SAH in contact with vapor should be the same as that of the gel immersed in water. However, even at a relative humidity of 99%, which corresponds to pF 4.13, SAH practically do not swell (w 3-3.5 g g1). In any case, the absorbed water will be unavailable for plants. Therefore, the only real possibility for SAH to absorb water is its preliminary condensation which can be attained through the presence of temperature gradients. [Pg.126]

The decomposition of Ba(C104)2 has been the subject of several studies [858]. It is believed that during the initial acceleratory process, reactions are analogous to those cited above for Mg(C104)2. After a series of several successive bond scissions, the accumulating concentration of chloride product participates in the equilibrium... [Pg.188]

Subsequently, rate coefficients were determined for the zinc chloride-catalysed bromination of benzene, toluene, i-propyl-benzene, r-butylbenzene, xylenes, p-di-f-butylbenzene, mesitylene, 1,2,4-trimethyl-, sym-triethyl-, sym-tri-f-butyl-, 1,2,3,5-and 1,2,4,5-tetramethyl- and pentamethylbenzenes, all at 25.4 °C and in acetic acid, and it was shown that the reaction was inhibited by HBr.ZnCl2 which accumulates during the bromination and was considered to cause the first step of the reaction (formation of ArHBr2) to reverse320. The second-order coefficients for bromination of o-xylene at 25.0 °C were shown to be inversely dependent upon the hydrogen bromide concentration and the reversal of equilibrium (155)... [Pg.133]

Table I summarizes some typical distribution coefficients. Sediments become enriched in plutonium with respect to water, usually with a factor of vlO5. Also living organisms enrich plutonium from natural waters, but usually less than sediments a factor of 103 - 101 is common. This indicates that the Kd-value for sediment (and soil) is probably governed by surface sorption phenomena. From the simplest organisms (plankton and plants) to man there is clear evidence of metabolic discrimination against transfer of plutonium. In general, the higher the species is on the trophic level, the smaller is the Kd-value. One may deduce from the Table that the concentration of plutonium accumulated in man in equilibrium with the environment, will not exceed the concentration of plutonium in the ground water, independent of the mode of ingestion. Table I summarizes some typical distribution coefficients. Sediments become enriched in plutonium with respect to water, usually with a factor of vlO5. Also living organisms enrich plutonium from natural waters, but usually less than sediments a factor of 103 - 101 is common. This indicates that the Kd-value for sediment (and soil) is probably governed by surface sorption phenomena. From the simplest organisms (plankton and plants) to man there is clear evidence of metabolic discrimination against transfer of plutonium. In general, the higher the species is on the trophic level, the smaller is the Kd-value. One may deduce from the Table that the concentration of plutonium accumulated in man in equilibrium with the environment, will not exceed the concentration of plutonium in the ground water, independent of the mode of ingestion.
Each of these processes is characterised by a transference of material across an interface. Because no material accumulates there, the rate of transfer on each side of the interface must be the same, and therefore the concentration gradients automatically adjust themselves so that they are proportional to the resistance to transfer in the particular phase. In addition, if there is no resistance to transfer at the interface, the concentrations on each side will be related to each other by the phase equilibrium relationship. Whilst the existence or otherwise of a resistance to transfer at the phase boundary is the subject of conflicting views"8 , it appears likely that any resistance is not high, except in the case of crystallisation, and in the following discussion equilibrium between the phases will be assumed to exist at the interface. Interfacial resistance may occur, however, if a surfactant is present as it may accumulate at the interface (Section 10.5.5). [Pg.599]

Figure 18 shows the dependence of the activation barrier for film nucleation on the electrode potential. The activation barrier, which at the equilibrium film-formation potential E, depends only on the surface tension and electric field, is seen to decrease with increasing anodic potential, and an overpotential of a few tenths of a volt is required for the activation energy to decrease to the order of kBT. However, for some metals such as iron,30,31 in the passivation process metal dissolution takes place simultaneously with film formation, and kinetic factors such as the rate of metal dissolution and the accumulation of ions in the diffusion layer of the electrolyte on the metal surface have to be taken into account, requiring a more refined treatment. [Pg.242]

Now we begin to develop these ideas. First, we establish that reactions can take place in their reverse direction as soon as some products have accumulated. Then we see how to relate the equilibrium composition to the thermodynamic properties of the system. [Pg.478]

For an ice sheet of thickness H in equilibrium with a climate supplying accumulation at a rate a (thickness of ice per imit time), the vertical velocity near the ice-sheet surface is a and this velocity decreases to zero at the ice-sheet bed. A characteristic time constant for the ice core is H/a. The longest histories are therefore obtained from the thick and dry interiors of the ice sheets (particularly central East Antarctica, where H/a = 2 X 10 yrs). Unfortunately, records from low a sites are also low resolution, so to obtain a high-resolution record a high a site must be used and duration sacrificed (examples are the Antarctic Peninsula (H/a = 10 ) and southern Greenland H/a = 5 x 10 )). [Pg.466]

Solution Example 11.5 treats a system that could operate indefinitely since the liquid phase serves only as a catalyst. The present example is more realistic since the liquid phase is depleted and the reaction eventually ends. The assumption that the gas-side resistance is negligible is equivalent to assuming that a = ag throughout the course of the reaction. Equilibrium at the interface then fixes a = ag/Ku at all times. Dropping the flow and accumulation terms in the balance for the liquid phase, i.e.. Equation (11.11), gives 0 = kiAiV(ag/KH - ai) - Vikafi... [Pg.392]

Here Q(t) denotes the heat input per unit volume accumulated up to time t, Cp is the specific heat per unit mass at constant pressure, Cv the specific heat per unit mass at constant volume, c is the sound velocity, oCp the coefficient of isobaric thermal expansion, and pg the equilibrium density. (4) The heat input Q(t) is the laser energy released by the absorbing molecule per unit volume. If the excitation is in the visible spectral range, the evolution of Q(t) follows the rhythm of the different chemically driven relaxation processes through which energy is... [Pg.272]


See other pages where Accumulation equilibrium is mentioned: [Pg.298]    [Pg.48]    [Pg.174]    [Pg.48]    [Pg.298]    [Pg.48]    [Pg.174]    [Pg.48]    [Pg.65]    [Pg.208]    [Pg.98]    [Pg.65]    [Pg.179]    [Pg.97]    [Pg.125]    [Pg.133]    [Pg.153]    [Pg.462]    [Pg.274]    [Pg.132]    [Pg.238]    [Pg.88]    [Pg.157]    [Pg.269]    [Pg.365]    [Pg.9]    [Pg.120]    [Pg.123]    [Pg.44]    [Pg.170]    [Pg.99]    [Pg.643]    [Pg.157]    [Pg.624]    [Pg.45]   
See also in sourсe #XX -- [ Pg.48 ]

See also in sourсe #XX -- [ Pg.48 ]




SEARCH



© 2024 chempedia.info