Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accelerated Soxhlet Extraction

Accelerated Soxhlet Extraction Sample is extracted with a suitable solvent at elevated temperature and pressure. (10)... [Pg.20]

Shen, J. and Shao, X., Comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Ana/. Bioanal. Chem., 383, 1003, 2005. [Pg.323]

The first step for the determination of PAHs is removal from the matrix by solvent extraction, which preferably is performed with boiling toluene or benzene (hot solvent extraction by refluxing see Jacob and Grimmer 1994), although other solvents (e.g. tol-uene/acetone, acetone, and dichloromethane) and other extraction procedures (ultrasonic treatment, Soxhlet extraction, and accelerated solvent extraction) can also be applied. [Pg.99]

Soxhlet extraction Ultrasonic disruption Supercritical fluid extraction Accelerated solvent extraction... [Pg.719]

MAE simply involves placing the sample with the solvent in specialized containers and heating the solvent using microwave energy. MAE is also sometimes called MASE, which can stand for microwave-assisted solvent extraction or microwave-accelerated solvent extraction. In any event, the extraction process is more rapid than Soxhlet extractions, can be run in batches, and reduces solvent consumption. As in the case of sonication, MAE may overcome retention of the analyte by the matrix, but analyte degradation can be a problem at higher temperatures in certain applications. [Pg.757]

Zuloaga O, Etxebarria N, Fernandez LA, Madariaga J. Comparison of accelerated solvent extraction with microwave-assisted extraction and Soxhlet for the extraction of chlorinated biphenyls in soil samples. Trends Anal. Chem. 1998 17 642-647. [Pg.268]

A variety of sample handling techniques is available, which can be divided into four types Soxhlet extraction, steam distillation, soni-cation and accelerated solvent extraction (ASE) [3]. [Pg.444]

Heise and Litz [26] investigated the extraction behaviour of surfactants (LAS, NPEO and cationics) from sand comparing Soxhlet extraction, accelerated solvent extraction (ASE) and microwave-assisted extraction. Fractionation of the three surfactant types anionic, non-ionic and cationic, was accomplished by column chromatography with aluminium oxide. Soxhlet extraction and ASE of spiked sand with methanol—stored during 7 days prior to extraction—gave similar recoveries for both LAS and NPEO with values between 88 and 116%. Less efficient extraction was achieved by microwave extraction (79% for NPEO). [Pg.822]

Hubert et al. [101] state that accelerated solvent extraction compared to alternatives such as Soxhlet extraction, steam distillation, microwave extraction, ultrasonic extraction and, in some cases, supercritical fluid extraction is an exceptionally effective extraction technique. Hubert et al. [ 101 ] studied the effect of operating variables such as choice of solvent and temperature on the solvent extraction of a range of accelerated persistent organic pollutants in soil, including chlorobenzenes, HCH isomers, DDX, polychlorobiphenyl cogeners and polycyclic aromatic hydrocarbons. Temperatures ofbetween 20 and 180 °C were studied. The optimum extraction conditions use two extraction steps at 80 and 140 °C with static cycles (extraction time 35 minutes) using toluene as a solvent and at a pressure of 15 MPa. [Pg.10]

Pyle and Marcus [ 102] achieved low ppb detection limits for the determination of organochlorine insecticides in soil using accelerated solvent extraction followed by gas chromatography ion trap tandem mass spectrometry. Richter et al. [103] showed that accelerated solvent extraction gave essentially equivalent recoveries of chlorinated dibenzo-p-dioxins and dibenzofurans from soil compounds to Soxhlet extraction, but in less time and using much less solvent. [Pg.10]

Chlordane C02 Compared to Soxhlet and accelerated solvent extraction [156]... [Pg.15]

Chlordane co2 Comparison of supercritical fluid extraction, accelerated solvent extraction and Soxhlet extraction [275, 277-280]... [Pg.115]

Solid-phase microextraction [320-322], microwave-assisted extraction [321, 323], accelerated solvent extraction and Soxhlet extraction have been discussed [324,325]. [Pg.118]

Extraction of solid samples Homogenization extractions Sonication extractions Microwave assisted extractions Soxhlet extractions Accelerated solvent extractions Supercritical fluid extractions Extraction of liquid samples Liquid-liquid extractions Solid phase extractions (SPE)... [Pg.119]

A method for determining CDDs in municipal incinerator fly ash has been reported (Alexandrou and Pawliszyn 1990). The method uses supercritical fluid extraction (SFE) to recover CDDs from fly ash samples prior to GC. Supercritical fluid extraction is faster and less expensive than the typically used Soxhlet extraction and gives quantitative removal of CDDs and CDFs from fly ash. Extracts obtained using SFE will still require additional clean-up steps prior to analysis. Supercritical C02 has also been used to assist solvent-based extraction of CDDs from soils (Friedrich and Kleibohmer 1997). In this case, the supercritical fluid was combined with accelerated solvent extraction (liquid extractions conducted under elevated temperature and pressure) to provide good recoveries relative to Soxhlet extractions. [Pg.561]

This chapter covers techniques for the extraction of semivolatile organics from solid matrices. The focus is on commonly used and commercially available techniques, which include Soxhlet extraction, automated Soxhlet extraction, ultrasonic extraction, supercritical fluid extraction (SFE), accelerated solvent extraction (ASE), and microwave-assisted extraction (MAE). The underlying principles, instrumentation, operational procedures, and selected applications of these techniques are described. In a given application, probably all the methods mentioned above will work, so it often boils down to identifying the most suitable one. Consequently, an effort is made to compare these methodologies. [Pg.139]

Pressurized solvent extraction (PSE), also called pressurized fluid extraction (PEE), accelerated solvent extraction (ASE ), pressurized liquid extraction (PEE), or enhanced solvent extraction (ESE), is a solid-liquid extraction that has been developed as an alternative to conventional extractions such as Soxhlet, maceration, percolation, or reflux. It uses organic solvents at high pressure and temperature to increase the efficiency of the extraction process. Increased temperature decreases the viscosity of the liquid solvent, enhances its diffusivity, and accelerates the extraction kinetics. High pressure keeps the solvent in its liquid state and thus facilitates its penetration into the matrix, resulting in increase extraction speed [30]. [Pg.345]

Soil, sediment, and dust samples were prepared in a similar way before analysis. After the pre-cleanup steps and homogenization, FRs were extracted from samples using different solid-liquid extraction techniques. The most commonly used technique was accelerated solvent extraction (ASE), which enables the fast extraction of samples using different solvents such as hexane and dichloromethane [98-100]. Other commonly used techniques for these samples were ultrawave-assisted extraction (UAE) [97], which also enabled quick extraction, and the more time-consuming but very efficient technique, Soxhlet extraction [96]. Some authors have also described less common techniques such as microSPE [95]. There is also information that many FRs that are no longer produced (mainly PCBs and PBDEs) are present in dusts, soils, and sediments in very high amounts, even 390 pg/g [98]. [Pg.174]

A number of alternatives to Soxhlet extraction have been described. By pressurized liquid or accelerated solvent extraction, the extraction efficiency can be enhanced. Superheated water extraction, taking advantages of the decreased polarity of water at higher temperature and pressure, has been used for liquid extraction of solid samples as well. [Pg.18]

Traditional methods of extraction, such as Soxhlet, have been replaced by modern techniques as supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), ultrasonic extraction, and accelerated solvent extraction (ASE) during recent years. The application of specific methods to these kinds of samples has permitted the development of a great number of other extraction methods. In the following list, a brief description is given ... [Pg.1228]

Begin this method with the Soxhlet extraction of approximately 1 to 10 g of soil or sediment with 90% methanol/10% distilled water. The methanol will effectively wet the soil and sediments and remove the majority of the organochlorine pesticides. Alternatively, the soils and sediments may be extracted with heated solvent under pressure using the accelerated solvent extractor by Dionex (see Chapter 9 on the extraction of food and natural materials for details of analysis). After the extraction is complete, dilute the methanol extract with distilled water to a final concentration of 10% methanol. Process the extract through a C-18 cartridge as described in Section 7.10.1. In this case, the C-18 sorbent with greater hydrophobicity is used because of the 10% methanol present in the sample. Elute the cartridge with ethyl acetate and analyze by GC/MS. [Pg.182]

A recent advance is accelerated solvent extraction (ASE), a method that uses high temperature and pressure to push an organic solvent through a solid material and to collect the eluent in a vial (Fig. 9.2). The instrument, made by Dionex, is automated and may run 30 samples at once. The instrument can process one sample every 15 min with extraction efficiencies equal to that produced by Soxhlet extraction in 12 h (Dionex, Product Literature, Appendix). The extraction does not use supercritical fluids but consists of using elevated... [Pg.224]


See other pages where Accelerated Soxhlet Extraction is mentioned: [Pg.235]    [Pg.113]    [Pg.117]    [Pg.135]    [Pg.139]    [Pg.265]    [Pg.731]    [Pg.89]    [Pg.133]    [Pg.493]    [Pg.567]    [Pg.6]    [Pg.114]    [Pg.223]    [Pg.329]    [Pg.344]    [Pg.221]    [Pg.251]    [Pg.252]    [Pg.254]    [Pg.331]    [Pg.1411]    [Pg.178]    [Pg.118]   
See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Extraction, Soxhlet

Soxhlet

© 2024 chempedia.info