Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption, Concentrated Case

Most commonly absorption or fluorescence spectroscopy is used for detection of the changes in the concentration of G or HG. The monitoring wavelength is chosen so that the difference between the molar absorptivities, in case of absorption, or emission quantum yields, in the case of fluorescence detection, between G and HG is maximized. The amplitude of the relaxation process depends on the difference in the molar absorptivities or fluorescence quantum yields, but the observed rate constants are the same at all observation wavelengths when the kinetics are first- or pseudo-first order (Fig. 3). [Pg.171]

To evaluate the pattern and the rate of excretion, the residual concentration of the drug in the body one week after administration and the estimation of the absorption in case of a relevant renal excretion. The kind of study is obligatory for the registration as a drug when the rat is chosen as rodent model (in toxicology). [Pg.568]

Figure 13.5 compares the slopes of the equilibrium curves at a low concentration of ammonia in the liquid and at a higher concentration. If the concentration of ammonia is less than about 0.1 mole fraction, the equilibrium line is fairly straight. However, heat effects associated with the absorption of ammonia can move the equilibrium curve to a higher slope. Problem 13.3 ° shows how even a low concentration case may require correction. [Pg.1087]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

Endo-exo product mixtures were isolated using the following procedure. A solution of cyclopentadiene (concentration 2-10" M in water and 0.4 M in oiganic solvents) and the dienophile (concentration 1-5 mM) in the appropriate solvent, eventually containing a 0.01 M concentration of catalyst, was stirred at 25 C until the UV-absorption of the dienophile had disappeared. The reaction mixture (diluted with water in the case of the organic solvents) was extracted with ether. The ether layer was washed with water and dried over sodium sulfate. After the evaporation of the ether the... [Pg.67]

The two absorption bands, at 1050 and 1400 cm , which appear in the Raman spectra of solutions of nitric acid in concentrated sulphuric acid are not attributable to either of the acid molecules. In oleum the lower band appears at 1075-1095 cm. That these bands seemed to correspond to those in the spectra of anhydrous nitric acid and solid dinitrogen pentoxide caused some confusion in the assignment of the spectrum. The situation was resolved by examining the Raman spectra of solutions of nitric acid in perchloric or selenic acids , in which the strong absorption at 1400 cm is not accompanied by absorption at about 1050 cm . Thus, the band at 1400 cm arises from the nitronium ion, and the band at about 1050 cm can be attributed in the cases of nitric acid and solid dinitrogen pentoxide to the nitrate ion formed according to the following schemes ... [Pg.13]

The determination of an analyte s concentration based on its absorption of ultraviolet or visible radiation is one of the most frequently encountered quantitative analytical methods. One reason for its popularity is that many organic and inorganic compounds have strong absorption bands in the UV/Vis region of the electromagnetic spectrum. In addition, analytes that do not absorb UV/Vis radiation, or that absorb such radiation only weakly, frequently can be chemically coupled to a species that does. For example, nonabsorbing solutions of Pb + can be reacted with dithizone to form the red Pb-dithizonate complex. An additional advantage to UV/Vis absorption is that in most cases it is relatively easy to adjust experimental and instrumental conditions so that Beer s law is obeyed. [Pg.394]

Lasers can be coupled efficiently to fiber optic devices to deHver intense monochromatic light precisely to the desired region of the body, including internal organs (see Fiber optics). As in other cases of laser-induced photochemistry, biphotonic effects may be important (87). Lasers also offer the advantage of being able to concentrate the incident energy in a spectral bandpass matched to the absorption band of the sensitizer. [Pg.394]

Properties. Thienamycin is isolated as a colorless, hygroscopic, zwitterionic soHd, although the majority of carbapenems have been obtained as sodium salts and, in the case of the sulfated olivanic acids, as disodium salts (12). Concentrated aqueous solutions of the carbapenems are generally unstable, particularly at low pH. AH the substituted natural products have characteristic uv absorption properties that are often used in assay procedures. The ir frequency of the P-lactam carbonyl is in the range 1760 1790 cm . ... [Pg.4]

When it is desired to compute, with rigorous methods, actual rather than equilibrium stages, Eqs. (13-69) and (13-94) can be modified to include the Murphree vapor-phase efficiency T ij, defined by Eq. (13-29). This is particularly desirable for multistage operations involving feeds containing components of a wide range ol volatility and/or concentration, in which only a rectification (absorption) or stripping action is provided and all components are not sharply separated. In those cases, the use of a different Murphree efficiency for each component and each tray may be necessary to compute recovery accurately. [Pg.1290]

In many practical situations involving nearly complete cleanup of the gas, an approximate result can be obtained from the equations just presented even when solutions are concentrated or when absorption heat effects are present. In such cases the driving forces in the upper part of the tower are very much smaller than those at the bottom, and the value of mGM/LM used in the eqiiations should be the ratio of the slopes of the equilibrium line m and the operating line Lm/Gm iu the low-concentration range near the top of the tower. [Pg.1355]

In concentrated wstems the change in gas aud liquid flow rates within the tower and the heat effects accompanying the absorption of all the components must be considered. A trial-aud-error calculation from one theoretical stage to the next usually is required if accurate results are to be obtained, aud in such cases calculation procedures similar to those described in Sec. 13 normally are employed. A computer procedure for multicomponent adiabatic absorber design has been described by Feiutnch aud Treybal [Jnd. Eng. Chem. Process Des. Dev., 17, 505 (1978)]. Also see Holland, Fundamentals and Modeling of Separation Processes, Prentice Hall, Englewood Cliffs, N.J., 1975. [Pg.1361]

Metal impurities can be determined qualitatively and quantitatively by atomic absorption spectroscopy and the required purification procedures can be formulated. Metal impurities in organic compounds are usually in the form of ionic salts or complexes with organic compounds and very rarely in the form of free metal. If they are present in the latter form then they can be removed by crystallising the organic compound (whereby the insoluble metal can be removed by filtration), or by distillation in which case the metal remains behind with the residue in the distilling flask. If the impurities are in the ionic or complex forms, then extraction of the organic compound in a suitable organic solvent with aqueous acidic or alkaline solutions will reduce their concentration to acceptable levels. [Pg.53]


See other pages where Absorption, Concentrated Case is mentioned: [Pg.1348]    [Pg.1362]    [Pg.19]    [Pg.1171]    [Pg.1185]    [Pg.1555]    [Pg.1572]    [Pg.1551]    [Pg.1568]    [Pg.1352]    [Pg.1366]    [Pg.1348]    [Pg.1362]    [Pg.19]    [Pg.1171]    [Pg.1185]    [Pg.1555]    [Pg.1572]    [Pg.1551]    [Pg.1568]    [Pg.1352]    [Pg.1366]    [Pg.230]    [Pg.203]    [Pg.1081]    [Pg.204]    [Pg.1119]    [Pg.396]    [Pg.398]    [Pg.652]    [Pg.412]    [Pg.99]    [Pg.511]    [Pg.323]    [Pg.66]    [Pg.435]    [Pg.441]    [Pg.459]    [Pg.187]    [Pg.232]    [Pg.232]    [Pg.327]    [Pg.417]    [Pg.342]    [Pg.343]    [Pg.382]    [Pg.1352]    [Pg.1359]   


SEARCH



Absorption concentrated

Absorption concentration

Cases concentration

© 2024 chempedia.info