Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atmospheric Absorptions

Absorption, atmospheric gases, 217-218,219f Absorption-based spectroscopic systems, 219-229... [Pg.383]

Fig. 5. Atmospheric Absorption. - The light-colored zones are the bands with least absorption (atmospheric windows). Fig. 5. Atmospheric Absorption. - The light-colored zones are the bands with least absorption (atmospheric windows).
SIGNAL/NOISE LIMITED SITUATIONS TRACE ANALYSIS INTERFERING ABSORPTION ATMOSPHERIC SAMPLING ... [Pg.58]

Vapor Treatment. The vapors from the tank space can be sent to a treatment system (condenser, absorption, etc.) before venting. The system shown in Fig. 9.1 uses a vacuum-pressure relief valve which allows air in from the atmosphere when the liquid level falls (Fig. 9.1a) but forces the vapor through a treatment system when the tank is filled (Fig. 9.16). If inert gas blanketing is required, because of the flammable nature of the material, then a similar system can be adopted which draws inert gas rather than air when the liquid level falls. [Pg.260]

Zaera F, Fischer D A, Shen S and Gland J L 1998 Fluorescence yield near-edge X-ray absorption spectroscopy under atmospheric conditions CO and FI2 coadsorption on Ni(IOO) at pressures between 10 and 0.1 Torr Surf. Sc/. 194 205-16... [Pg.1798]

Method 1. Equip a 1 litre three-necked flask (or bolt-head flask) with a separatory funnel, a mechanical stirrer (Fig. II, 7, 10), a thermometer (with bulb within 2 cm. of the bottom) and an exit tube leading to a gas absorption device (Fig. II, 8, 1, c). Place 700 g. (400 ml.) of chloro-sulphonic acid in the flask and add slowly, with stirring, 156 g. (176 ml.) of pure benzene (1) maintain the temperature between 20° and 25° by immersing the flask in cold water, if necessary. After the addition is complete (about 2 5 hours), stir the mixture for 1 hour, and then pour it on to 1500 g. of crushed ice. Add 200 ml. of carbon tetrachloride, stir, and separate the oil as soon as possible (otherwise appreciable hydrolysis occurs) extract the aqueous layer with 100 ml. of carbon tetrachloride. Wash the combined extracts with dilute sodium carbonate solution, distil off most of the solvent under atmospheric pressure (2), and distil the residue under reduced pressure. Collect the benzenesulphonyl chloride at 118-120°/15 mm. it solidifies to a colourless sohd, m.p. 13-14°, when cooled in ice. The yield is 270 g. A small amount (10-20 g.) of diphen3 lsulphone, b.p. 225°/10 mm., m.p. 128°, remains in the flask. [Pg.822]

Infrared instruments using a monochromator for wavelength selection are constructed using double-beam optics similar to that shown in Figure 10.26. Doublebeam optics are preferred over single-beam optics because the sources and detectors for infrared radiation are less stable than that for UV/Vis radiation. In addition, it is easier to correct for the absorption of infrared radiation by atmospheric CO2 and 1420 vapor when using double-beam optics. Resolutions of 1-3 cm are typical for most instruments. [Pg.393]

Allen, H. C. Brauers, T. Finlayson-Pitts, B. J. Illustrating Deviations in the Beer-Lambert Law in an Instrumental Analysis Laboratory Measuring Atmospheric Pollutants by Differential Optical Absorption Spectrometry, /. Chem. [Pg.447]

In addition to these laboratory-based experiments it is interesting to note that the Swan bands of C2 are important in astrophysics. They have been observed in the emission spectra of comets and also in the absorption spectra of stellar atmospheres, including that of the sun, in which the interior of the star acts as the continuum source. [Pg.240]

Measurements of ozone (O3) concentrations in the atmosphere are of particular importance. Ozone absorbs strongly in the ultraviolet region and it is this absorption which protects us from a dangerously high dose of ultraviolet radiation from the sun. The vitally important ozone layer lies in the stratosphere and is typically about 10 km thick with a maximum concentration about 25 km above the surface of the earth. Extreme depletion of ozone in a localised part of the atmosphere creates what is known as an ozone hole. [Pg.380]

Both the a-X and b-X transitions have long been known from absorption by the oxygen in the earth s atmosphere, the source of radiation being the sun and the very long path length of oxygen overcoming their extreme weakness. For laboratory observation of these transitions, and particularly for accurate determination of absolute absorption intensity, CRDS has proved to be an ideal technique. [Pg.384]

Electrica.1 Properties. The bulk electrical properties of the parylenes make them excellent candidates for use in electronic constmction. The dielectric constants and dielectric losses are low and unaffected by absorption of atmospheric water. The dielectric strength is quoted for specimens of 25 p.m thickness because substantially thicker specimens cannot be prepared by VDP. If the value appears to be high in comparison with other materials, however, it should be noted that the usual thickness for such a measurement is 3.18 mm. Dielectric strength declines with the square root of increasing... [Pg.434]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Dual-Pressure Process. Dual-pressure processes have a medium pressure (ca 0.3—0.6 MPa) front end for ammonia oxidation and a high pressure (1.1—1.5 MPa) tail end for absorption. Some older plants still use atmospheric pressure for ammonia conversion. Compared to high monopressure plants, the lower oxidation pressure improves ammonia yield and catalyst performance. Platinum losses are significantiy lower and production mns are extended by a longer catalyst life. Reduced pressure also results in weaker nitric acid condensate from the cooler condenser, which helps to improve absorber performance. Due to the spHt in operating conditions, the dual-pressure process requires a specialized stainless steel NO compressor. [Pg.41]


See other pages where Atmospheric Absorptions is mentioned: [Pg.477]    [Pg.477]    [Pg.284]    [Pg.1243]    [Pg.1791]    [Pg.472]    [Pg.475]    [Pg.4]    [Pg.731]    [Pg.922]    [Pg.950]    [Pg.586]    [Pg.91]    [Pg.380]    [Pg.290]    [Pg.435]    [Pg.1]    [Pg.3]    [Pg.377]    [Pg.386]    [Pg.386]    [Pg.387]    [Pg.523]    [Pg.213]    [Pg.215]    [Pg.253]    [Pg.269]    [Pg.293]    [Pg.286]    [Pg.352]    [Pg.420]    [Pg.423]    [Pg.431]    [Pg.198]    [Pg.23]   
See also in sourсe #XX -- [ Pg.356 , Pg.372 ]

See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Atmospheres absorption

© 2024 chempedia.info