Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-Amino acids reactions

Amino acids, sulphoxide, radiolysis of 909 a-Amino acids, reactions of 776, 777 a-Aminosulphones, synthesis of 176 Aminosulphonyl radicals 1093 Aminosulphoxides rearrangement of 740 synthesis of 336 Andersen synthesis 60 / -Anilinosulphoxides, synthesis of 334, 335 Anion radicals 1048-1050 ESR spectra of 1050-1054 formation of during electrolysis 963 during radiolysis 892-897, 899, 903 Annulation 778, 781, 801, 802 Antibiotics, synthesis of 310 Arenesulphenamides 740 Arenesulphenates 623 reactions of 282 rearrangement of 719 Arenesulphinates 824, 959 chiral 618... [Pg.1196]

So far, we have considered protocols that result in chiral centres in the C and position (actnally always with the same substiment). Let us now turn to satnrated carbenes that have only one chiral centre in the backbone. Figure 5.15 shows a procedure that utilises a chiral diamine derived from proline, a naturally occurring a-amino acid. Reaction with aniline to the corresponding amide and reduction with LiAlH yields the diamine used [60]. The actual synthesis of the chiral carbene then calls for reaction of the proUne derived diamine with thiophosgene and subsequent S/Cl exchange with oxalyl chloride [50]. The... [Pg.292]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Synthetic utility of stereoselective alkylations in natural product chemistry is exemplified by the preparation of optically active 2-arylglycine esters (38). Chirally specific a-amino acids with methoxyaryl groups attached to the a-carbon were prepared by reaction of the dimethyl ether of a chiral bis-lactam derivative with methoxy arenes. Using SnCl as the Lewis acid, enantioselectivities ranging from 65 to 95% were obtained. [Pg.553]

Stereoselective Acylations. Intramolecular Ftiedel-Crafts acylation reaction of A/-ataLkyl a-amino acid detivatives gives cycHc ketones with high enantioselectivity (100). This methodology has been used for the enantiospeciftc syntheses of tylophorine [482-20-2] and cryptopleutine [87302-53-2] the ptincipal representatives of phenanthroiadolizidine and phenanthroquiaolizidine alkaloids (qv) (101). [Pg.558]

The A/-carboxyl group is lost duting the reaction, and no additional deprotection step is requited (104). Benzene reacts with A/-carboxyglyciae anhydride to give aminomethyl phenyl ketone however, it does not react with other A/-carboxy-a-amino acid anhydrides (105). [Pg.558]

Synthesis from OC-Amino Acids and Related Compounds. Addition of cyanates, isocyanates, and uiea derivatives to a-amino acids yields hydantoin piecuisois. This method is called the Read synthesis (2), and can be considered as the reverse of hydantoin hydrolysis. Thus the reaction of a-amino acids with alkaline cyanates affords hydantoic acids, which cyclize to hydantoins in an acidic medium. [Pg.253]

In a modification of the original method. Read (60) replaced a-amino acids with a-amino nitriles. This reaction is sometimes known as Strecker hydantoin synthesis, the term referring to the reaction employed for the synthesis of the a-amino nitrile from an aldehyde or ketone. The cycli2ation intermediate (18) has been isolated in some cases (61), and is involved in a pH-controUed equiUbrium with the corresponding ureide. [Pg.253]

Substitution of alkaline cyanates by isocyanates allows the preparation of 3-substituted hydantoias, both from amino acids (64) and amino nitriles (65). The related reaction between a-amino acids and phenyl isothiocyanate to yield 5-substituted 3-phenyl-2-thiohydantoiQS has been used for the analytical characterization of amino acids, and is the basis of the Edman method for the sequential degradation of peptides with concomitant identification of the /V-terminal amino acid. [Pg.254]

A variety of a-amino acid derivatives, including the acids themselves, haUdes, esters, and amides can be transformed iato hydantoias by coadeasatioa with urea (67). a-Hydroxy acids and thek nitriles give a similar reaction (68) ... [Pg.254]

Aluminum chloride [7446-70-0] is a useful catalyst in the reaction of aromatic amines with ethyleneknine (76). SoHd catalysts promote the reaction of ethyleneknine with ammonia in the gas phase to give ethylenediamine (77). Not only ammonia and amines, but also hydrazine [302-01-2] (78), hydrazoic acid [7782-79-8] (79—82), alkyl azidoformates (83), and acid amides, eg, sulfonamides (84) or 2,4-dioxopyrimidines (85), have been used as ring-opening reagents for ethyleneknine with nitrogen being the nucleophilic center (1). The 2-oxopiperazine skeleton has been synthesized from a-amino acid esters and ethyleneknine (86—89). [Pg.4]

Other Reactions. a-Nitroalkanoic acids or thek esters can be prepared (54—56) by treating nitroparaffins with magnesium methyl carbonate, or with triisopropylaluminum and carbon dioxide. These products are reduced readily to a-amino acids. [Pg.101]

With active methylene compounds, the carbanion substitutes for the hydroxyl group of aHyl alcohol (17,20). Reaction of aHyl alcohol with acetylacetone at 85°C for 3 h yields 70% monoaHyl compound and 26% diaHyl compound. Malonic acid ester in which the hydrogen atom of its active methylene is substituted by A/-acetyl, undergoes the same substitution reaction with aHyl alcohol and subsequendy yields a-amino acid by decarboxylation (21). [Pg.73]

Many methods for chemical synthesis of a-amino acids have been estabUshed. Because excellent reviews have been pubUshed (25,38), weU-known reactions are introduced here only by their names and synthetic pathways. [Pg.276]

Reaction of Bisglycinatocopper(II). Bisglycinatocopper(II) [13479-54-4] condenses with ahphatic aldehydes. Removal of copper from the condensate results in P-hydroxy-a-amino acid. This is a classical synthetic method of DL-threonine, but the formation of i //o-isomer is unavoidable. [Pg.277]

I inhydrin-Color Reaetion, This reaction is commonly used for qualitative analysis of a-amino acids, peptides, and proteins. [Pg.281]

Reactions with OC-Amino Acids. On heating two moles of an a-amino acid, such as alanine, in the presence of a tetraalkyl titanate and an alcohol, reaction that gives a 2,5-pipetazineclione and an oxytitanate occurs (36). [Pg.142]

In 1959 a new non-protein L-a-amino acid was isolated from the seeds of Acacia willardiana and later from other species of Acacia-, it proved to be l-/3-amino-/3-carboxyethyluracil (977) (59ZPC(316)164). The structure was confirmed by at least four syntheses in the next few years. The most important involves a Shaw synthesis (Section 2.13.3.1.2e) of the acetal (975) and hydrolysis to the aldyhyde (976) followed by a Strecker reaction (potassium cyanide, ammonia and ammonium chloride) to give DL-willardiine (977) after resolution, the L-isomer was identical with natural material (62JCS583). Although not unambiguous, a Principal Synthesis from the ureido acid (978) and ethyl formylacetate is the most direct route (64ZOB407). [Pg.146]

Numerous variations of this reaction have been studied, principally those involving a prior inclusion of the nuclear sulfur atom in a thioacylamino compound. Thus, thiobenz-amido acetaldehyde diethyl acetal (8) underwent ring closure to 2-phenylthiazole (9) on gentle heating (57JCS1556). Similarly, iV-thioacyl a-amino acids also undergo ready ring closure to thiazoles. [Pg.113]

The dinitrophenyl group has been used to protect the imidazole — NH group in histidines (45% yield)" by reaction with 2,4-dinitrofluorobenzene and potassium carbonate. Imidazole —NH groups, but not a-amino acid groups, are quantitatively regenerated by reaction with 2-mercaptoethanol (22°, pH 8, 1 h)." The 2,4-... [Pg.390]

Depending on the stereoselectivity of the reaction, either the or the 5 configuration can generated at C-2 in the product. This corresponds to enantioselective synthesis of the d md L enantiomers of a-amino acids. Hydrogenation using chiral catalysts has been carefully investigated. The most effective catalysts for the reaction are ihodiiun... [Pg.109]

All enzymes are proteins that catalyze many biochemical reactions. They are unbranched polymers of a-amino acids of the general formula... [Pg.831]

A wide variety of a-tnfluoromethyl a-amino acids are readily available from the reaction of 5-fluoro-4-tnfluoromethyl-l,3 azoles with allylic alcohols [138, 139] a-Tnfluoromethyl-subsumted a-amino acids show anubactenal and antihy pertensive activity Some are highly specific enzyme inhibitors (suicide inhibitors) and may be important as bioregulators [140] Furthermore, they are interesting candidates for peptide modification... [Pg.858]

An example of a biologically important aldehyde is pyridoxal phosphate, which is the active form of vitamin Bg and a coenzyme for many of the reactions of a-amino acids. In these reactions the amino acid binds to the coenzyme by reacting with it to form an imine of the kind shown in the equation. Reactions then take place at the amino acid portion of the imine, modifying the amino acid. In the last step, enzyme-catalyzed hydrolysis cleaves the imine to pyridoxal and the modified amino acid. [Pg.728]

Nucleophilic substitution by ammonia on a-halo acids (Section 19.16) The a-halo acids obtained by halogenation of carboxylic acids under conditions of the Hell-Volhard-Zelinsky reaction are reactive substrates in nucleophilic substitution processes. A standard method for the preparation of a-amino acids is displacement of halide from a-halo acids by nucleophilic substitution using excess aqueous ammonia. [Pg.928]

In the Strecker synthesis an aldehyde is converted to an a-amino acid with one more carbon atom by a two-stage procedure in which an a-fflnino nitrile is an intenne-diate. The a-fflnino nitrile is fonned by reaction of the aldehyde with ffliimonia or an fflTtmonium salt and a source of cyanide ion. Hydrolysis of the nitrile group to a carboxylic acid function completes the synthesis. [Pg.1121]

FIGURE 1.9 (a) Amino acids build proteins by connecting the n-carboxyl C atom of one amino acid to the n-amino N atom of the next amino acid in line, (b) Polysaccharides are built by combining the C-1 of one sugar to the C-4 O of the next sugar in the polymer, (c) Nucleic acids are polymers of nucleotides linked by bonds between the 3 -OH of the ribose ring of one nucleotide to the 5 -P04 of its neighboring nucleotide. All three of these polymerization processes involve bond formations accompanied by the elimination of water (dehydration synthesis reactions). [Pg.13]

The azlactones of a-benzoylaminocinnamic acids have traditionally been prepared by the action of hippuric acid (1, Ri = Ph) and acetic anhydride upon aromatic aldehydes, usually in the presence of sodium acetate. The formation of the oxazolone (2) in Erlenmeyer-Plochl synthesis is supported by good evidence. The method is a way to important intermediate products used in the synthesis of a-amino acids, peptides and related compounds. The aldol condensation reaction of azlactones (2) with carbonyl compounds is often followed by hydrolysis to provide unsaturated a-acylamino acid (4). Reduction yields the corresponding amino acid (6), while drastic hydrolysis gives the a-0X0 acid (5). ... [Pg.229]

Raney nickel desulfurization has been applied especially to the synthesis of different kinds of amino acids. a-Amino acids have been prepared by the Strecker synthesis of substituted thiophenealdehydes, followed by desulfurization of the thiophene a-amino acids. a-Amino-n-enantic acid, a-amino-n-caprylic acid, and norleucin have been obtained in about 50% yield from the appropriate thiophene aldehydes. From the desulfurization of thiophene -amino acids, obtained from the reaction of thiophenealdehydes with malonic acid in ammonia, aliphatic j8-amino acids, isolated as acetates, have been obtained in high yields. The desulfurization of 3-nitrothiophenes, such as (232), in ammonia leads to y-substituted amino acids (233). ... [Pg.113]

Saturated 2,2 -bis-5-oxazolones (10) react with diamines under mild conditions to form polyamides (34) of high molecular weight in quantitative yield [Eq. (21)]. These polymers are composed of dicarboxylic acid, a-amino acid, and diamine units in a regular arrangement of both head-to-tail and tail-to-tail amide groups. They represent a cross between conventional polyamides and a-amino acid homopolymers. A feature of this polymerization is that no small molecules such as H2O, NHg, or CO2 are lost during reaction. [Pg.90]


See other pages where A-Amino acids reactions is mentioned: [Pg.316]    [Pg.316]    [Pg.226]    [Pg.162]    [Pg.175]    [Pg.138]    [Pg.330]    [Pg.18]    [Pg.280]    [Pg.189]    [Pg.138]    [Pg.672]    [Pg.2]    [Pg.94]    [Pg.622]    [Pg.196]   
See also in sourсe #XX -- [ Pg.776 , Pg.777 ]




SEARCH



A-Amino acids Ugi reaction

Amino acids reactions

Carboxylic acids, syn-a-amino-P-hydroxyenantioselective aldol reaction

Carboxylic acids, syn-a-amino-P-hydroxyenantioselective aldol reaction gold catalysis

Chiral a-amino acetals Lewis acid-mediated reaction

© 2024 chempedia.info