Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

3d relations

Skill 1.3d-Relate intermolecular electrostatic forces, including Van derWaals, polar and induced polar, and ionic, to their expected states of matter and their characteristic physical properties... [Pg.32]

The equilibrium properties of a fluid are related to the correlation fimctions which can also be detemrined experimentally from x-ray and neutron scattering experiments. Exact solutions or approximations to these correlation fiinctions would complete the theory. Exact solutions, however, are usually confined to simple systems in one dimension. We discuss a few of the approximations currently used for 3D fluids. [Pg.478]

Clearly, the next step is the handling of a molecule as a real object with a spatial extension in 3D space. Quite often this is also a mandatory step, because in most cases the 3D structure of a molecule is closely related to a large variety of physical, chemical, and biological properties. In addition, the fundamental importance of an unambiguous definition of stereochemistry becomes obvious, if the 3D structure of a molecule needs to be derived from its chemical graph. The moleofles of stereoisomeric compounds differ in their spatial features and often exhibit quite different properties. Therefore, stereochemical information should always be taken into ac-count if chiral atom centers are present in a chemical structure. [Pg.91]

The problem of perception complete structures is related to the problem of their representation, for which the basic requirements are to represent as much as possible the functionality of the structure, to be unique, and to allow the restoration of the structure. Various approaches have been devised to this end. They comprise the use of molecular formulas, molecular weights, trade and/or trivial names, various line notations, registry numbers, constitutional diagrams 2D representations), atom coordinates (2D or 3D representations), topological indices, hash codes, and others (see Chapter 2). [Pg.292]

Physical, chemical, and biological properties are related to the 3D structure of a molecule. In essence, the experimental sources of 3D structure information are X-ray crystallography, electron diffraction, or NMR spectroscopy. For compounds without experimental data on their 3D structure, automatic methods for the conversion of the connectivity information into a 3D model are required (see Section 2.9 of this Textbook and Part 2, Chapter 7.1 of the Handbook) [16]. [Pg.412]

The 3D autocorrelation vector of the three xylene isomers in Figure 8-4 differ only with respect to the component relating to the two methyl groups. For o-xylene it is... [Pg.413]

The 3D MoRSE code is closely related to the molecular transform. The molecular transform is a generalized scattering function. It can be used to predict the intensity of the scattered radiation i for a known molecular structure in X-ray and electron diffraction experiments. The general molecular transform is given by Eq. (22), where i(s) is the intensity of the scattered radiation caused by a collection of N atoms located at points r. ... [Pg.415]

Steinhauer and Gasteiger [30] developed a new 3D descriptor based on the idea of radial distribution functions (RDFs), which is well known in physics and physico-chemistry in general and in X-ray diffraction in particular [31], The radial distribution function code (RDF code) is closely related to the 3D-MoRSE code. The RDF code is calculated by Eq. (25), where/is a scaling factor, N is the number of atoms in the molecule, p/ and pj are properties of the atoms i and/ B is a smoothing parameter, and Tij is the distance between the atoms i and j g(r) is usually calculated at a number of discrete points within defined intervals [32, 33]. [Pg.415]

Comparative QSAR is a field currently under development by several groups. Large databases of known QSAR and 3D QSAR results have been compiled. Such a database can be used for more than simply obtaining literature citations. The analysis of multiple results for the same or similar systems can yield a general understanding of the related chemistry as well as providing a good comparison of techniques. [Pg.249]

An arithmetic progression is a succession of terms such that each term, except the first, is derivable from the preceding by the addition of a quantity d called the common difference. All arithmetic progressions have the form a, a + d, a + 2d, a -t- 3d,. With a = first term, I = last term, d = common difference, n = number of terms, and s = sum of the terms, the following relations hold ... [Pg.431]

Energy Laws Several laws have been proposed to relate size reduction to a single variable, the energy input to the mill. These laws are encompassed in a general differential equation (Walker, Lewis, McAdams, and Gilliland, Principles of Chemical Engineering, 3d ed., McGraw-HiU, New York, 1937) ... [Pg.1831]

All current comparative modeling methods consist of four sequential steps (Fig. 2) [5,6]. The first step is to identify the proteins with known 3D structures that are related to the target sequence. The second step is to align them with the target sequence and pick those known structures that will be used as templates. The third step is to build the model... [Pg.275]

This section briefly reviews prediction of the native structure of a protein from its sequence of amino acid residues alone. These methods can be contrasted to the threading methods for fold assignment [Section II.A] [39-47,147], which detect remote relationships between sequences and folds of known structure, and to comparative modeling methods discussed in this review, which build a complete all-atom 3D model based on a related known structure. The methods for ab initio prediction include those that focus on the broad physical principles of the folding process [148-152] and the methods that focus on predicting the actual native structures of specific proteins [44,153,154,240]. The former frequently rely on extremely simplified generic models of proteins, generally do not aim to predict native structures of specific proteins, and are not reviewed here. [Pg.289]

Eortunately, a 3D model does not have to be absolutely perfect to be helpful in biology, as demonstrated by the applications listed above. However, the type of question that can be addressed with a particular model does depend on the model s accuracy. At the low end of the accuracy spectrum, there are models that are based on less than 25% sequence identity and have sometimes less than 50% of their atoms within 3.5 A of their correct positions. However, such models still have the correct fold, and even knowing only the fold of a protein is frequently sufficient to predict its approximate biochemical function. More specifically, only nine out of 80 fold families known in 1994 contained proteins (domains) that were not in the same functional class, although 32% of all protein structures belonged to one of the nine superfolds [229]. Models in this low range of accuracy combined with model evaluation can be used for confirming or rejecting a match between remotely related proteins [9,58]. [Pg.295]

M Baroni, G Costantmo, G Craciam, D Riganelli, R Valigi, S dementi. Generating optimal linear PLS estimations (GOLPE) An advanced chemometnc tool for handling 3D-QSAR problems. Quant Struct-Act Relat 12 9-20, 1993. [Pg.367]

For a given structure, the values of S at which in-phase scattering occurs can be plotted these values make up the reciprocal lattice. The separation of the diffraction maxima is inversely proportional to the separation of the scatterers. In one dimension, the reciprocal lattice is a series of planes, perpendicular to the line of scatterers, spaced 2Jl/ apart. In two dimensions, the lattice is a 2D array of infinite rods perpendicular to the 2D plane. The rod spacings are equal to 2Jl/(atomic row spacings). In three dimensions, the lattice is a 3D lattice of points whose separation is inversely related to the separation of crystal planes. [Pg.267]

Optical interferometry can be used to measure surface features without contact. Light reflected from the surface of interest interferes with light from an optically flat reference surface. Deviations in the fnnge pattern produced by the interference are related to differences in surface height. The interferometer can be moved to quantify the deviations. Lateral resolution is determined by the resolution of the magnification optics. If an imaging array is used, three-dimensional (3D) information can be provided. [Pg.700]

When relating interface structure to strength, the literature is replete with analyses, which are based on the nail solution [1,58], as shown in Fig. 10. This model is excellent when applied to very weak interfaces (Gic 1 J/m ) where most of the fracture events in the interface occur on a well-defined 2D plane. However, the nail solution is not applicable to strong interfaces (Gic 100-1000 J/m ), where the fracture events occur in a 3D deformation zone, at the crack tip. In Fig. 10, two beams are bonded by E nails per unit area of penetration length L. The fracture energy G c, to pull the beams apart at velocity V is determined by... [Pg.369]

Rosengaard and Skriver [5] have demonstrated, that in all 3d, 4d, and 5d transition metals, the intrinsic stacking fault energy, 7, can be accurately estimated from the relation,... [Pg.384]


See other pages where 3d relations is mentioned: [Pg.127]    [Pg.228]    [Pg.140]    [Pg.233]    [Pg.127]    [Pg.228]    [Pg.140]    [Pg.233]    [Pg.117]    [Pg.221]    [Pg.2368]    [Pg.198]    [Pg.361]    [Pg.313]    [Pg.402]    [Pg.518]    [Pg.538]    [Pg.664]    [Pg.690]    [Pg.726]    [Pg.327]    [Pg.249]    [Pg.588]    [Pg.3]    [Pg.144]    [Pg.275]    [Pg.279]    [Pg.279]    [Pg.280]    [Pg.282]    [Pg.273]    [Pg.129]    [Pg.982]    [Pg.267]   
See also in sourсe #XX -- [ Pg.358 ]




SEARCH



© 2024 chempedia.info