Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experiments neutron scattering

The equilibrium properties of a fluid are related to the correlation fimctions which can also be detemrined experimentally from x-ray and neutron scattering experiments. Exact solutions or approximations to these correlation fiinctions would complete the theory. Exact solutions, however, are usually confined to simple systems in one dimension. We discuss a few of the approximations currently used for 3D fluids. [Pg.478]

A dynamic transition in the internal motions of proteins is seen with increasing temperamre [22]. The basic elements of this transition are reproduced by MD simulation [23]. As the temperature is increased, a transition from harmonic to anharmonic motion is seen, evidenced by a rapid increase in the atomic mean-square displacements. Comparison of simulation with quasielastic neutron scattering experiment has led to an interpretation of the dynamics involved in terms of rigid-body motions of the side chain atoms, in a way analogous to that shown above for the X-ray diffuse scattering [24]. [Pg.248]

Specification of. S SkCG, CO) requires models for the diffusive motions. Neutron scattering experiments on lipid bilayers and other disordered, condensed phase systems are often interpreted in terms of diffusive motions that give rise to an elastic line with a Q-dependent amplitude and a series of Lorentzian quasielastic lines with Q-dependent amplitudes and widths, i.e.. [Pg.479]

Figure 10 Elastic incoherent structure factors for lipid H atoms obtained from an MD simulation of a fully hydrated DPPC bilayer, and quasielastic neutron scattering experiments on DPPC bilayers at two hydration levels for (a) motion in the plane of the bilayer and (b) motion m the direction of the bilayer normal. Figure 10 Elastic incoherent structure factors for lipid H atoms obtained from an MD simulation of a fully hydrated DPPC bilayer, and quasielastic neutron scattering experiments on DPPC bilayers at two hydration levels for (a) motion in the plane of the bilayer and (b) motion m the direction of the bilayer normal.
We finish this section by comparing our results with NMR and incoherent neutron scattering experiments on water dynamics. Self-diffusion constants on the millisecond time scale have been measured by NMR with the pulsed field gradient spin echo (PFGSE) method. Applying this technique to oriented egg phosphatidylcholine bilayers, Wassail [68] demonstrated that the water motion was highly anisotropic, with diffusion in the plane of the bilayers hundreds of times greater than out of the plane. The anisotropy of... [Pg.492]

The overall result is that in the melt the polymer molecules adopt Gaussian configurations and behave as thermodynamically ideal entities. This combination of ideality and chain entanglement has been confirmed by neutron scattering experiments and is well established despite the apparent paradox. [Pg.79]

In addition, theoretically calculated dispersion curves and Raman intensities have been reported as well as results of neutron scattering experiments [113, 115]. [Pg.52]

Supercomputers can be directed to the study of techniques as well as materials and processes. For example, one can simulate neutron scattering experiments with the goal of elucidating the effects of approximations usually made In "standard treatments of the experimental data. [Pg.9]

By small-angle neutron scattering experiments on water/AOT/hydrocarbon microemulsions containing various additives, the change of the radius of the miceUar core with the addition of small quantities of additives has been investigated. The results are consistent with a model in which amphiphilic molecules such as benzyl alcohol and octanol are preferentially adsorbed into the water/surfactant interfacial region, decreasing the micellar radius, whereas toluene remains predominantly in the bulk hydrocarbon phase. The effect of n-alcohols on the stability of microemulsions has also been reported [119],... [Pg.485]

Concerning the magnetisation density in magnetic neutron scattering experiments... [Pg.256]

Why, then, is the magnetisation density used The answer is that the magnetisation density is important for certain approximations which are usually made in analysing neutron scattering experiments. In the standard polarised neutron diffraction (PND) experiment [5], only one parameter is measured - the so-called flipping ratio . It is impossible to determine a vector quantity like the magnetisation density from a single number, unless some assumptions are made. The assumptions usually made are ... [Pg.256]

Elastic and quasi-elastic (NSE) neutron scattering experiments were performed on dilute solutions of linear poly(isoprene) (PIP) polymers and of PIP stars (f = 4,12,18) [150]. In all cases the protonated polymers were dissolved in d-benzene and measured at T = 323 K, where benzene is a good solvent. Figure 50 shows the results of the static scattering profile in a scaled Kratky representation. In this plot the radii of gyration, obtained from a fit of the... [Pg.96]

Fig. 4. A schematic two-dimensional illustration of the idea for an information theory model of hydrophobic hydration. Direct insertion of a solute of substantial size (the larger circle) will be impractical. For smaller solutes (the smaller circles) the situation is tractable a successful insertion is found, for example, in the upper panel on the right. For either the small or the large solute, statistical information can be collected that leads to reasonable but approximate models of the hydration free energy, Eq. (7). An important issue is that the solvent configurations (here, the point sets) are supplied by simulation or X-ray or neutron scattering experiments. Therefore, solvent structural assumptions can be avoided to some degree. The point set for the upper panel is obtained by pseudo-random-number generation so the correct inference would be of a Poisson distribution of points and = kTpv where v is the van der Waals volume of the solute. Quasi-random series were used for the bottom panel so those inferences should be different. See Pratt et al. (1999). Fig. 4. A schematic two-dimensional illustration of the idea for an information theory model of hydrophobic hydration. Direct insertion of a solute of substantial size (the larger circle) will be impractical. For smaller solutes (the smaller circles) the situation is tractable a successful insertion is found, for example, in the upper panel on the right. For either the small or the large solute, statistical information can be collected that leads to reasonable but approximate models of the hydration free energy, Eq. (7). An important issue is that the solvent configurations (here, the point sets) are supplied by simulation or X-ray or neutron scattering experiments. Therefore, solvent structural assumptions can be avoided to some degree. The point set for the upper panel is obtained by pseudo-random-number generation so the correct inference would be of a Poisson distribution of points and = kTpv where v is the van der Waals volume of the solute. Quasi-random series were used for the bottom panel so those inferences should be different. See Pratt et al. (1999).
Additional insights into the dynamics and structure of bimodal elastomers have been obtained by dynamic light-scattering experiments [129], neutron scattering experiments [130] and calculations [131], dual cross-linking system experiments [132], non-affine swelling [133], and the computer simulations already mentioned. [Pg.364]

Figure 1. The physical arrangement of an oriented polymer sample in a neutron scattering experiment showing the scattering angle, 6, and the azimuthal angle, . Figure 1. The physical arrangement of an oriented polymer sample in a neutron scattering experiment showing the scattering angle, 6, and the azimuthal angle, <j>.
Recent small angle neutron scattering experiments shed uncertainty on the assumption of affine deformation (14-18). There... [Pg.453]

Highly energetic compounds with potential use in explosive devices must be characterized completely and safely, particularly as the explosive character may be linked directly to vibrational modes in the molecular structure, hence the application of computational methods to complement experimental observations. ANTA 5 has been the subject of various studies and, as an adjunct to one of these and to confirm the results of an inelastic neutron scattering experiment, an isolated molecule calculation was carried out using the 6-311G basis set <2005CPL(403)329>. [Pg.161]

The usefulness of potential energy hypersurfaces in describing reaction dynamics and chemical reactivity is well illustrated by Levine and Bernstein [84] and Shaik et al. [85] books. See also the fundamental paper of Hase [86]. This success does not assure that the coordinate representation of quantum system is necessarily truthful. It goes without saying, the coordinate representation is an extremely useful mathematical model. However, from recent inelastic neutron scattering experiments on hydrogen bonded system, the idea that the BO approximation may be inadequate has been advanced by Kearley and coworkers[87]. [Pg.292]

Chem. Phys., 107, 4751 (1997). Local Dynamics in a Long-Chain Alkane Melt from Molecular Dynamics Simulations and Neutron Scattering Experiments. [Pg.64]


See other pages where Experiments neutron scattering is mentioned: [Pg.475]    [Pg.718]    [Pg.840]    [Pg.163]    [Pg.246]    [Pg.250]    [Pg.466]    [Pg.476]    [Pg.480]    [Pg.494]    [Pg.494]    [Pg.128]    [Pg.130]    [Pg.31]    [Pg.78]    [Pg.217]    [Pg.243]    [Pg.101]    [Pg.113]    [Pg.5]    [Pg.116]    [Pg.223]    [Pg.354]    [Pg.156]    [Pg.269]    [Pg.9]    [Pg.55]    [Pg.47]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Inelastic neutron scattering experiments

Light- and neutron scattering experiment

Lysozyme neutron scattering experiments

Neutron experiments

Neutron scattering

Neutron scattering contrast variation experiments

Quasi elastic neutron scattering experiments

Scattering experiments

© 2024 chempedia.info