Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconate perovskite

Until the late sixties the only known ferroelectrics, piezoelectrics, and pyroelectrics were certain inorganic monocrystals, or polycrystalline ceramics like lead titanate zirconate perovskites. Other known materials with macroscopic polarization were electrets, (for example mixmres of beeswax and rosin) in which the polarization was produced by application of the electric field in the melted state and then by cooling and the solidification of the polarized material. [Pg.791]

Simple ABO compounds in addition to BaTiO are cadmium titanate [12014-14-17, CdTiO lead titanate [12060-00-3] PbTiO potassium niobate [12030-85-2] KNbO sodium niobate [12034-09-2], NaNbO silver niobate [12309-96-5], AgNbO potassium iodate [7758-05-6], KIO bismuth ferrate [12010-42-3], BiFeO sodium tantalate, NaTaO and lead zirconate [12060-01 -4], PbZrO. The perovskite stmcture is also tolerant of a very wide range of multiple cation substitution on both A and B sites. Thus many more complex compounds have been found (16,17), eg, (K 2 i/2) 3 ... [Pg.203]

Lead zirconate [12060-01 -4] PbZrO, mol wt 346.41, has two colorless crystal stmctures a cubic perovskite form above 230°C (Curie point) and a pseudotetragonal or orthorhombic form below 230°C. It is insoluble in water and aqueous alkaUes, but soluble in strong mineral acids. Lead zirconate is usually prepared by heating together the oxides of lead and zirconium in the proper proportion. It readily forms soHd solutions with other compounds with the ABO stmcture, such as barium zirconate or lead titanate. Mixed lead titanate-zirconates have particularly high piezoelectric properties. They are used in high power acoustic-radiating transducers, hydrophones, and specialty instmments (146). [Pg.73]

Zirconates and hafnates can be prepared by firing appropriate mixtures of oxides, carbonates or nitrates. None of them are known to contain discrete [M04]" or [MOs] ions. Compounds M ZrOs usually have the perovskite structure whereas M2Zr04 frequently adopt the spinel structure. [Pg.964]

Some perovskites are widely used as piezo-transducers, BaTi03 for example, and lead zirconate (PbZr03) which is a well-known ferroelectric material sensitive to stresses. Also, some perovskites are good pyro-transducers that is, heat causes electric polarization of them. [Pg.150]

Voigt, J. A. Tuttle, B. A. Headley, T. J. Lamppa, D. L. 1995. The pyrochlore-to-perovskite transformation in solution-derived lead zirconate titanate thin films. In Ferroelectric Thin Films IV, edited by Tuttle, B. A. Desu, S. B. Ramesh, R. Shiosaki,T. Mat. Res. Soc. Symp. Proc. 361 395 102. [Pg.75]

The hosts for ACT and REE immobilization are phases with a fluorite-derived structure (cubic zirconia-based solid solutions, pyrochlore, zirco-nolite, murataite), and zircon. The REEs and minor ACTs may be incorporated in perovskite, monazite, apatite-britholite, and titanite. Perovskite and titanite are also hosts for Sr, whereas hollandite is a host phase for Cs and corrosion products. None of these ceramics is truly a single-phase material, and other phases such as silicates (pyroxene, nepheliiie, plagioclase), oxides (spinel, hibonite/loveringite, crichtonite), or phosphates may be present and incorporate some radionuclides and process contaminants. A brief description of the most important phases suitable for immobilization of ACTs and REEs is given below. [Pg.46]

A wide array of ferroelectric, piezoelectric and pyroelectric materials have titanium, zirconium and zinc metal cations as part of their elemental composition Many electrical materials based on titanium oxide (titanates) and zirconium oxide (zirconates) are known to have structures based on perovskite-type oxide lattices Barium titanate, BaTiOs and a diverse compositional range of PZT materials (lead zirconate titanates, Pb Zr Tij-yOs) and PLZT materials (lead lanthanum zirconate titanates, PbxLai-xZryTii-yOs) are among these perovskite-type electrical materials. [Pg.155]

Certain glass-ceramic materials also exhibit potentially useful electro-optic effects. These include glasses with microcrystallites of Cd-sulfoselenides, which show a strong nonlinear response to an electric field (9), as well as glass-ceramics based on ferroelectric perovskite crystals such as niobates, titanates, or zirconates (10—12). Such crystals permit electric control of scattering and other optical properties. [Pg.320]

Knapp et al. (144) show that for oxides containing 3d elements in spinel, perovskite, rocksalt, or zircon-type structures, the K-edge XANES spectra are quite independent of 3d electron occupation but instead nicely correlate with the crystal structure type. Various studies of Ti K edges of titanium oxides and other titanium compounds have been reported (40,158,172,177, 297). [Pg.255]

The authors [34] proposed to use perovskites ABO3, where A are calcium cations, or a mixture of calcium and lanthanum, and B are iron, cobalt, nickel or manganese cations, or their mixtures. Besides, aluminates, silicates, aluminium sihcates, zirconates and chromates of different types are added as structure-forming components providing strength and stability to thermal shocks [34]. [Pg.192]

A broad range of electronic ceramic materials have been prepared by CSD, but three material systems have dominated the field of ferroelectric thin films. These include the perovskites PbZr03-PbTi03 (lead zirconate titanate PZT), BaTi03-SrTi03 (barimn strontium titanate BST), and the layered perovskite SrBi2Ta209 (strontium bismuth tantalate SBT). The extensive solid solubility ranges... [Pg.529]

Piezoceramics are currently no longer manufactured from BaTi03, but from lead titanate zirconate, Pb(Ti,Zr)03, which aLso crystallizes in a perovskite lattice. Ceramic capacitors to a value of 4.1 10 DM were produced in 1995, ca. 50% of the turnover for functional ceramics, in which the three region USA, Japan and Europe have equal shares. [Pg.464]

Figure 3. Temperature dependence of the amorphization dose for (A) pyrochlore, zircon, monazite and perovskite and for (B) fayalite, forsterite, zirconolite, and hnttonite. The lines represent a least-squares fit to Equation (15). Figure 3. Temperature dependence of the amorphization dose for (A) pyrochlore, zircon, monazite and perovskite and for (B) fayalite, forsterite, zirconolite, and hnttonite. The lines represent a least-squares fit to Equation (15).

See other pages where Zirconate perovskite is mentioned: [Pg.307]    [Pg.191]    [Pg.307]    [Pg.191]    [Pg.307]    [Pg.67]    [Pg.133]    [Pg.155]    [Pg.158]    [Pg.259]    [Pg.274]    [Pg.587]    [Pg.10]    [Pg.57]    [Pg.39]    [Pg.51]    [Pg.86]    [Pg.401]    [Pg.403]    [Pg.403]    [Pg.234]    [Pg.10]    [Pg.882]    [Pg.401]    [Pg.403]    [Pg.403]    [Pg.2361]    [Pg.5268]    [Pg.75]    [Pg.548]    [Pg.603]    [Pg.478]    [Pg.591]    [Pg.170]    [Pg.358]    [Pg.361]    [Pg.86]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Zircon

Zirconate

Zirconates

© 2024 chempedia.info