Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc enzymes reaction mechanisms

The first zinc enzyme to be discovered was carbonic anhydrase in 1940, followed by car-boxypeptidase A some 14 years later. They both represent the archetype of mono-zinc enzymes, with a central catalytically active Zn2+ atom bound to three protein ligands, and the fourth site occupied by a water molecule. Yet, despite the overall similarity of catalytic zinc sites with regard to their common tetrahedral [(XYZ)Zn2+-OH2] structure, these mononuclear zinc enzymes catalyse a wide variety of reactions, as pointed out above. The mechanism of action of the majority of zinc enzymes centres around the zinc-bound water molecule,... [Pg.198]

As mentioned earlier, by far the largest number of zinc enzymes are involved in hydrolytic reactions, frequently associated with peptide bond cleavage. Carboxypeptidases and ther-molysins are, respectively, exopeptidases, which remove amino acids from the carboxyl terminus of proteins, and endopeptidases, which cleave peptide bonds in the interior of a polypeptide chain. However, they both have almost identical active sites (Figure 12.4) with two His and one Glu ligands to the Zn2+. It appears that the Glu residue can be bound in a mono- or bi-dentate manner. The two classes of enzymes are expected to follow similar reaction mechanisms. [Pg.200]

This zinc metalloenzyme [EC 1.1.1.1 and EC 1.1.1.2] catalyzes the reversible oxidation of a broad spectrum of alcohol substrates and reduction of aldehyde substrates, usually with NAD+ as a coenzyme. The yeast and horse liver enzymes are probably the most extensively characterized oxidoreductases with respect to the reaction mechanism. Only one of two zinc ions is catalytically important, and the general mechanistic properties of the yeast and liver enzymes are similar, but not identical. Alcohol dehydrogenase can be regarded as a model enzyme system for the exploration of hydrogen kinetic isotope effects. [Pg.43]

Another important structural aspect in terms of the reaction mechanisms of zinc enzymes concerns the coordination mode of water and carboxylates, which can bind in a monoden-tate or bidentate fashion to the Zn(II) center, as shown in Figure 4. [Pg.4]

FIGURE 9. General reaction mechanism of zinc enzymes. L1-L3 represent any amino acid residues coordinated to the zinc... [Pg.8]

The enzyme copper, zinc superoxide dismutase (Cu,Zn-SOD, EC 1.15.1.1) catalyzes the disproportionation of superoxide anion to dioxygen and hydrogen peroxide (equations 1 and 2). Crystallographic data can be found in References 41-46. This antioxidant enzyme is present in the cytosol and mitochondrial intermembrane space of eukaryotic cells and in the periplasmic space of bacterial cells as a homodimer of 32 kDa. Each monomer binds one copper and one zinc ion. The reaction mechanism involves the... [Pg.10]

While there have been a considerable number of structural models for these multinuclear zinc enzymes (49), there have only been a few functional models until now. Czamik et al. have reported phosphate hydrolysis with bis(Coni-cyclen) complexes 39 (50) and 40 (51). The flexible binuclear cobalt(III) complex 39 (1 mM) hydrolyzed bis(4-nitro-phenyl)phosphate (BNP-) (0.05 mM) at pH 7 and 25°C with a rate 3.2 times faster than the parent Coni-cyclen (2 mM). The more rigid complex 40 was designed to accommodate inorganic phosphate in the in-temuclear pocket and to prevent formation of an intramolecular ju.-oxo dinuclear complex. The dinuclear cobalt(III) complex 40 (1 mM) indeed hydrolyzed 4-nitrophenyl phosphate (NP2-) (0.025 mM) 10 times faster than Coni-cyclen (2 mM) at pH 7 and 25°C (see Scheme 10). The final product was postulated to be 41 on the basis of 31P NMR analysis. In 40, one cobalt(III) ion probably provides a nucleophilic water molecule, while the second cobalt(III) binds the phosphoryl group in the form of a four-membered ring (see 42). The reaction of the phosphomonoester NP2- can therefore profit from the special placement of the two metal ions. As expected from the weaker interaction of BNP- with cobalt(in), 40 did not show enhanced reactivity toward BNP-. However, in the absence of more quantitative data, a detailed reaction mechanism cannot be drawn. [Pg.252]

Transition state analogues are essentially stable molecules which resemble, in geometry and in charge distribution, metastable intermediates of the enzymic reaction. The actual transition state of the reaction will be close in structure to the metastable intermediate, and will quite likely vary slightly between different substrates accepted by the same enzyme. There will not be a unique transition state for all transformations catalysed by one particular enzyme, neither of course will there be a unique transition state for different enzymes catalysing the hydrolysis of peptide links in a protein. There will nevertheless be some similarities in mechanism, and so structures containing a tetrahedral centre have been designed to inhibit a variety of proteinases, where a tetrahedral intermediate is always presumed. Differences exist in the pathway to, and breakdown of, the tetrahedral intermediate, and its stabilization, between thiol and serine proteinases, zinc proteinases, and aspartic proteinases. [Pg.125]

This section is therefore divided into three parts enzymic reactions involving zinc metal-protein complex formation and studies involving reaction mechanisms. [Pg.462]

As observed in other systems, the obvious difficulty in elucidating reaction mechanisms based on static structural snapshots subsequently initiated structural-dynamic theoretical studies of metalloproteinases. The active site chemistry of zinc-dependent enzymes has been studied using a variety of theoretical approaches. For example, mixed quantum mechaiucal/molecular calculations and classical molecular dynamic simulations have been employed, especially studies using density functional methods on redox-active metal centers (42). [Pg.1073]


See other pages where Zinc enzymes reaction mechanisms is mentioned: [Pg.602]    [Pg.632]    [Pg.54]    [Pg.212]    [Pg.156]    [Pg.355]    [Pg.150]    [Pg.2]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.13]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.1109]    [Pg.1112]    [Pg.159]    [Pg.1003]    [Pg.599]    [Pg.448]    [Pg.157]    [Pg.113]    [Pg.355]    [Pg.99]    [Pg.1073]    [Pg.1076]    [Pg.1332]   


SEARCH



Enzyme mechanism

Enzyme reaction mechanism

Zinc reaction

© 2024 chempedia.info