Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc chloride reduction

Guaiacols. Cresote, obtained from the pyrolysis of beechwood, and its active principles guaiacol [90-05-1] (1) and cresol [93-51-6] (2) have long been used in expectorant mixtures. The compounds are usually classed as direct-acting or stimulant expectorants, but their mechanisms of action have not been well studied. Cresol is obtained by the Clemmensen reduction of vanillin (3), whereas guaiacol can be prepared by a number of methods including the mercuric oxide oxidation of lignin (qv) (4), the zinc chloride reduction of acetovanillone (5), and the diazotization and hydrolysis of 0-anisidine (6). [Pg.517]

Treatment with PCI5 gives phthalyl chloride reduction with zinc and ethanoic acid or NaOH gives phthalide. Fusion with urea gives phthalimide. [Pg.312]

Mannitol, CH,0H(CH0Hi4CH40H, is a hexahydric alcohol obtained by the reduction of mannose. Since ring formation does not occur in mannitol, the hexacetyl derivative can exist in only one form, and therefore either zinc chloride or sodium acetate can be used as a catalyst for the acetylation. [Pg.142]

Diphenylmethane has been prepared with aluminum chloride as a catalyst from methylene chloride and benzene, from chloroform and benzene as a by-product in the preparation of triphenylmethane, and from benzyl chloride and benzene. It has been prepared by the reduction of benzophenone with hydriodic acid and phosphorus, or with sodium and alcohol. It has also been made by heating a solution of benzyl chloride in benzene with zinc dust, or with zinc chloride. The above method is only a slight modification of the original method of Hirst and Cohen. ... [Pg.35]

The exchange of aromatic protons can be effected in the absence of any -OH or —NH2 activating group during the course of a Clemmensen reduction in deuteriochloric and deuterioacetic acid mixture (see section Ill-D). This reaction has been carried out with various tricyclic diterpenes and is best illustrated by the conversion of dehydroabietic acid into its 12,14-d2-labeled analog (40 -+ 41).Amalgamated zinc is reportedly necessary for the exchange reaction since the results are less satisfactory when a zinc chloride-mercuric chloride mixture is used. [Pg.156]

It is not possible to use zinc for reductive debromination in the presence of (x-halo ketones and for transformations involving these intermediates, sodium iodide has been used. ° In some instances, e.g. 5,6-dihalo-3-ketones, iodide does not always give a completely halogen-free product, and zinc does not give clean debromination. The use of chromous chloride has proved advantageous in such cases and is the reagent of choice for vicinal dichlorides, which are inert to iodide ... [Pg.339]

Dihydroquinazolines are stable and a large number have been prepared. They have been synthesized by reductive cyclization of acyl derivatives of o-nitrobenzylamines, and by acylation of o-amino-benzylamines followed by ring closure. The ring closure can be effected by heating with anhydrous zinc chloride ° or by distillation. ... [Pg.283]

The anode residues must be chemically processed to recover the plutonium remaining in the residues. This may amount to about 10% of the feed mass if delta alloy is the feed metal. Either aqueous or pyrochemical processes may be used for anode recovery. One pyrochemical process used for recovery utilizes oxidation of the plutonium with zinc chloride to form plutonium chloride salt, followed by calcium reduction of the PUCI3 contained in the salt phase to produce pure plutonium metal (the impurities follow the zinc metal obtained from the oxidation reaction and are discarded to waste). Impurities more stable than calcium chloride remain in the salt phase and are also... [Pg.400]

Hydrogen-donor action involving direct or indirect hydrogenation by solid catalysts has provided partial reductions in the severity of treatment, not sufficient to eliminate waste of coal and of input hydrogen. To lower the temperature sufficiently requires mobile catalysts which can penetrate the coal. Melts such as zinc chloride are therefore a promising medium. [Pg.226]

They offer the advantage that reductions can be effected under conditions that permit the conversion of substrates that may be adversely sensitive to the presence of strong Brpnsted acids. For example, in the presence of a 10% excess of triethylsilane, addition of one-half equivalent of boron trifluoride etherate to octanal results, within one hour, in the formation of a 66% yield of dioctyl ether after a basic hydrolytic workup. Benzaldehyde provides a 75% yield of dibenzyl ether under the same reaction conditions. The remainder of the mass is found as the respective alcohol.70 Zinc chloride is also capable of catalyzing this reaction. With its use, simple alkyl aldehydes are converted into the symmetrical ethers in about 50% yields.330... [Pg.66]

In the preparation of iodides, but not bromides, PMHS may be substituted for the TMDO. Chlorides can be obtained if thionyl chloride and zinc iodide are added to suppress the formation of symmetrical ethers.314 An example of this type of reductive chlorination is shown by the TMDO-mediated conversion of p-tolualdehyde into p-methylbenzyl chloride (Eq. 201).313 To obtain chlorides from aldehydes having electron-withdrawing groups such as nitro or carbomethoxy, the initial reaction is first carried out at —70° and the mixture is then heated to reflux in order to reduce the formation of symmetrical ether by-products. Zinc chloride is substituted for zinc iodide for the synthesis of chlorides of substrates with electron-donating groups such as methoxy and hydroxy.314... [Pg.73]

The 1,4-reduction of a,/3-unsaturated aldehydes is best carried out with diphenylsilane in the presence of zinc chloride and tetrakis(triphenylphosphine) palladium436 or a combination of triethylsilane and tris(triphenylphosphine) chlororhodium 437 Other practical approaches use phenylsilane with nickel (0) and triphenylphosphine438 and diphenylsilane with cesium fluoride.83 It is possible to isolate the initial silyl enol ether intermediate from the 1,4-hydrosilylation of o, /3-unsaturated aldehydes (Eq. 264).73,411 The silyl enol ethers are produced as a mixture of E and Z isomers. [Pg.88]

The high-yield reductive methylation of numerous alkyl and arylamines and of dialkyl-and alkyl-arylamines with paraformaldehyde in the presence of zinc chloride and zinc borohydride has been reported (equation 52)151. [Pg.562]

Several methods are available for producing thorium metal it can be obtained by reducing thorium oxide with calcium, by electrolysis of anhydrous thorium chloride in a fused mixture of sodium and potassium chlorides, by calcium reduction of thorium tetrachloride mixed with anhydrous zinc chloride, and by reduction of thorium tetrachloride with an alkali metal. [Pg.38]

Zinc. Next to sodium, zinc is the most used reductant. It is available in powder, dust, and granular (mossy) forms. Zinc gets coated by a l er of zinc oxide which must be removed to activate it before it can reduce effectively. It can easily be activated by shaking 3 to 4 min. in a 1% to 2% hydrochloric acid solution. This means for every 98 ml of water volume, add 2 ml of coned hydrochloric acid. Then wash this solution with water, ethatiol, acetone, and ether. Ot activation can be accomplished by washing zinc in a solution of anhydrous zinc chloride (a very small amount) in ether, alcohol, or tetrahydrofuran. Another way is to stir 180 g of zinc in a solution of 1 g copper sulfate pentahydrate. Personally, I like the HCl acid method. [Pg.30]

In the Clemmensen reduction of 1,4-cyclohexanedione, all the products isolated from the reduction of 2,5-hexanedione were found in addition to 2,5-hexanedione (20%) and 2-methylcyclopentanone (6%). The presence of the two latter compounds reveals the mechanism of the reduction. In the first stage the carbon-carbon bond between carbons 2 and 3 ruptured, and the product of the cleavage, 2,5-hexanedione, partly underwent aldol condensation, partly its own further reduction [927], The cleavage of the carbon-carbon bond in 1,4-diketones was noticed during the treatment of 1,2-diben-zoylcyclobutane which afforded, on short refluxing with zinc dust and zinc chloride in ethanol, an 80% yield of 1,6-diphenyl-1,6-hexanedione [75<5]. [Pg.128]

Complete deoxygenation of quinones to hydrocarbons is accomplished in yields of 80-85% by heating with a mixture of zinc, zinc chloride and sodium chloride at 210-280° [932]. Refluxing with stannous chloride in acetic and hydrochloric acid followed by refluxing with zinc dust and 2 N sodium hydroxide reduced 4 -bromobenzo[5. 6 1.2]anthraquinone to 4 -bromo-benzo[5. 6 1.2]anthracene in 95% yield [181], and heating with iodine, phosphorus and 47% hydriodic acid at 140° converted 2-chloroanthraquinone to 2-chloroanthracene in 75% yield [222]. Also aluminum in dilute sulfuric add can be used for reductions of the same kind [151]. [Pg.129]

Since sodium borohydride usually does not reduce the nitrile function it may be used for selective reductions of conjugated double bonds in oc,/l-un-saturated nitriles in fair to good yields [7069,1070]. In addition some special reagents were found effective for reducing carbon-carbon double bonds preferentially copper hydride prepared from cuprous bromide and sodium bis(2-methoxyethoxy)aluminum hydride [7766], magnesium in methanol [7767], zinc and zinc chloride in ethanol or isopropyl alcohol [7765], and triethylam-monium formate in dimethyl formamide [317]. Lithium aluminum hydride reduced 1-cyanocyclohexene at —15° to cyclohexanecarboxaldehyde and under normal conditions to aminomethylcyclohexane, both in 60% yields [777]. [Pg.175]

Electrolytic reduction of an emulsion of the nitro compound in 1 M zinc chloride solution at high current density is another proposed method for conversion to the amine. Finely divided zinc is produced and this reduces the nitrocompound. Zinc ions also function as Lewis acid in the reduction of arylhydroxylamines [44]. [Pg.378]

In the following year, this method was also applied to the total synthesis of tjipanazole FI (371) (784). For this synthesis, the required bisindole 1444 was obtained starting from 5-chloroindole (1440) in three steps and 47% overall yield. Acylation of 1440 with oxalyl chloride led to the glyoxylic acid chloride 1441. Transmetalation of indolylmagnesium bromide with zinc chloride, followed by addition of the acid chloride, provided the ot-diketone 1443. Exhaustive reduction of 1443 with lithium aluminum hydride (LiAlFl4) afforded the corresponding bisindolylethane 1444. Executing a similar reaction sequence as shown for the synthesis of tjipanazole F2 (372) (see Scheme 5.243), the chloroindoline (+ )-1445 was transformed to tjipanazole FI (371) in two steps and 50% overall yield (784) (Scheme 5.244). [Pg.359]

When fluorescent detection is used, the mobile phase contains zinc chloride as the reduction agent for vitamin K derivatization. The most used mobile phases are methanol and dichloromethane or water. [Pg.615]


See other pages where Zinc chloride reduction is mentioned: [Pg.517]    [Pg.468]    [Pg.517]    [Pg.468]    [Pg.175]    [Pg.48]    [Pg.66]    [Pg.132]    [Pg.827]    [Pg.133]    [Pg.43]    [Pg.518]    [Pg.673]    [Pg.102]    [Pg.183]    [Pg.93]    [Pg.75]    [Pg.206]    [Pg.134]    [Pg.363]    [Pg.20]    [Pg.94]    [Pg.218]    [Pg.1414]    [Pg.244]   
See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Chlorides reduction

Zinc chloride

Zinc reduction

© 2024 chempedia.info