Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ziegler Natta atactic

When propene is polymerized under free radical conditions the polypropylene that results IS atactic Catalysts of the Ziegler-Natta type however permit the preparation of either isotactic or syndiotactic polypropylene We see here an example of how proper choice of experimental conditions can affect the stereochemical course of a chemical reaction to the extent that entirely new materials with unique properties result... [Pg.314]

Erom 1955—1975, the Ziegler-Natta catalyst (91), which is titanium trichloride used in combination with diethylaluminum chloride, was the catalyst system for propylene polymerization. However, its low activity, which is less than 1000 g polymer/g catalyst in most cases, and low selectivity (ca 90% to isotactic polymer) required polypropylene manufacturers to purify the reactor product by washing out spent catalyst residues and removing unwanted atactic polymer by solvent extraction. These operations added significantly to the cost of pre-1980 polypropylene. [Pg.203]

Polypropylene made by free-radical polymerization is generally atactic , that is to say, there is no pattern to the stereochemistry. On the other hand, both isotactic polypropylene (in which all the stereocenters are the same) and syndiotactic polypropylene (in which the stereocenters alternate) may be made via the Ziegler-Natta process (see Chapter 18, Problem 4). Experimentally, both isotactic and syndiotactic polypropylene generally have higher melting points than atactic polypropylene. [Pg.252]

The three different stereochemical forms of polypropylene all have somewhat different properties, and all can be made by using the right polymerization catalyst. Propylene polymerization using radical initiators does not work well, but polymerization using Ziegler-Natta catalysts allows preparation of isotactic, syndiotactic, and atactic polypropylene. [Pg.1209]

Following their introduction in 1953, Ziegler-Natta catalysts revolutionized the field of polymer chemistry because of two advantages the resultant polymers are linear, with practically no chain branching, and they are stereochemical ly controllable. Isotactic, syndiotactic, and atactic forms can all be produced, depending on the catalyst system used. [Pg.1209]

Alkene polymerization can be carried out in a controlled manner using a Ziegler-Natta catalyst. Ziegler-Natta polymerization minimizes the amount of chain branching in the polymer and leads to stereoregular chains—either isotactic (substituents on the same side of the chain) or syndiotactic (substituents on alternate sides of the chain), rather than atactic (substituents randomly disposed). [Pg.1220]

As polystyrene obtained by free radical polymerisation technique is atactic it is therefore non-crystalline. The isotactic polystyrene is obtained by the use of Ziegler-Natta catalysts and n-butyl lithium. Isotactic polystyrene is having a high crystalline Melting point of 250°C. It is transparent. It is more brittle than the atactic polymer. [Pg.157]

Free radical polymerisation is largely atactic while polymerisation with Ziegler-Natta catalysts can result in isotactic or syndiotactic polymers. [Pg.259]

Ziegler-Natta, the oldest process leading to linear and isotactic polypropylene with a low level of atactic structure. [Pg.241]

The slurry phase, the traditional route to PP, uses Ziegler-Natta type catalyst, a hydrocarbon solvent like hexane or heptane and polymer grade propylene (99.5%). Like the stringent requirements for polyethylene plant feeds, propylene must be high purity. Water, oxygen, carbon monoxide, or carbon dioxide will poison the catalyst. The reaction takes place in the liquid phase at 150—160°C and 100—400 psi. When the isotactic polymer particles form, they remain suspended in the diluent as slurry. The atactic polymers dissolve in the diluent. [Pg.347]

The versatility of Ziegler-Natta catalysis is shown in the polymerization of butadiene. Polybutadiene may have either a 1,2 or 1,4 configuration. The 1,4 polymer has a double bond as part of the main chain and this can be atactic, isotactic, or syndiotactic. Thus many different polybutadienes can be made and all of them have been made with the aid of Ziegler-Natta catalysts. [Pg.255]

Polypropylene (PP) is a semicrystalline commodity thermoplastic produced by coordination addition polymerization of propylene monomer [197]. Most frequently, stereospecific Ziegler-Natta catalysts are used in industrial processes to produce highly stereospecific crystalline isotactic (iPP) and syndiotactic (sPP) polymer with a small portion of amorphous atactic PP as a side product. Polymerization of non-symmetrical propylene monomer yields three possible sequences however, the steric effect related to the methyl side group highly favors the head-to-tail sequence. The occurence of head-to-head and tail-to-tail sequences produces defects along the PP chain [198]. Presence of such defects affects the overall degree of crystallinity of PP. [Pg.54]

Huels and Mobil developed technologies473 to manufacture isotactic poly (1-butene), a less important and more expensive polymer by Ziegler-Natta catalysts. The Mobil process474 is carried out in excess 1-butene and produces highly isotactic polymer. The Huels technology475 is a slurry operation and requires removal of the atactic isomer. [Pg.774]

Know the meaning of Ziegler-Natta polymerization, atactic, isotactic, and syndiotactic polymers. Illustrate each process or type of polymer with examples. [Pg.265]

With conventional polymerization processes, atactic chains are predominantly formed for the formation of isotactic and syndiotactic chains a special catalyst system is required, e.g. Ziegler-Natta catalysts. Such a process is called stereospecific polymerization. It enables the manufacture of, i.a., technically usable PP and also unbranched PE (see 4.1). The newest development is the metallocene katalyst it enables the building-up of chains-to-measure with very high degrees of chain regularity also the manufacture of syndiotactic polystyrene is technically possible in this way (see Qu. 2.47). [Pg.39]

It may be of interest that isotactic polystyrene formed by styrene polymerisation with Ziegler Natta catalysts [13] did not appear to be a polymer that could exhibit significantly better usable properties compared with atactic polystyrene produced in free radical styrene polymerisation processes. [Pg.29]

Figure 3.16 Possible structures for active sites in heterogeneous Ziegler-Natta catalysts producing atactic polypropylene. Mt = Mg or Mn (MgCl2- or MnCl2-supported catalysts), or Ti (non-supported TiC f-based catalysts) inm-surface of MgCl2, MnCl2 or TiCl3... Figure 3.16 Possible structures for active sites in heterogeneous Ziegler-Natta catalysts producing atactic polypropylene. Mt = Mg or Mn (MgCl2- or MnCl2-supported catalysts), or Ti (non-supported TiC f-based catalysts) inm-surface of MgCl2, MnCl2 or TiCl3...

See other pages where Ziegler Natta atactic is mentioned: [Pg.407]    [Pg.411]    [Pg.411]    [Pg.425]    [Pg.430]    [Pg.506]    [Pg.513]    [Pg.311]    [Pg.331]    [Pg.48]    [Pg.23]    [Pg.280]    [Pg.643]    [Pg.680]    [Pg.703]    [Pg.313]    [Pg.234]    [Pg.235]    [Pg.10]    [Pg.1148]    [Pg.263]    [Pg.55]    [Pg.56]    [Pg.59]    [Pg.65]    [Pg.69]    [Pg.102]    [Pg.110]    [Pg.111]    [Pg.119]    [Pg.127]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Atacticity

Natta

Ziegler Natta catalysts isotactic/atactic polymer

Ziegler-Natta

© 2024 chempedia.info