Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical styrene

Fig. 17. General chemistry of free-radical styrene polymerization. Fig. 17. General chemistry of free-radical styrene polymerization.
Table 4. Chain-Transfer Constants in Free-Radical Styrene Polymerization... Table 4. Chain-Transfer Constants in Free-Radical Styrene Polymerization...
Propagation in free-radical styrene polymerization proceeds through stable benzylic radicals by head-to-tail addition of the monomer ... [Pg.749]

Catalyst for Ionic Ring-Opening Addition Polyesterification Initiator for Free-Radical Styrene/Maleic Ester Copolymerization (Cross-linking Reaction)... [Pg.190]

It may be of interest that isotactic polystyrene formed by styrene polymerisation with Ziegler Natta catalysts [13] did not appear to be a polymer that could exhibit significantly better usable properties compared with atactic polystyrene produced in free radical styrene polymerisation processes. [Pg.29]

Batch or continuous Suspension free radical Styrene monomer Water carrier Stabilizing agent Several initiators Excellent heat control High conversion No devolatilization Good range of products Need prereactor for HIPS Poorer clarity Poor uniformity Round beads are hazard High operating costs Better for low-volume products... [Pg.67]

A steady-state free-radical styrene polymerization process is being controlled such that the rate of polymerization is constant at 1.79 g of monomer/ml-min. The initiator concentration is 6.6 x 10 molAnl. [Pg.217]

Industrially, free-radical styrene polymerizations are carried out in bulk, in emulsion, in solution, and in suspension. The clear plastic is generally prepared by mass polymerization. Because polystyrene is soluble in the monomer, mass polymerization, when carried out to completion, results in a tremendous increase in melt viscosity. To avoid this, when styrene is polymerized in bulk in an agitated kettle, the reaction is only carried out to 30 0% conversion. After that, the viscous syrup is transferred to another type of reactor for the completion of the reaction. According to one early... [Pg.364]

Methylthiophene/styrene copolymers Methyl methacrylate does not homopolymerize or copolymerize if present in the monomer feed during the oxidation of 3-methylthiophene. This is the reason that its copolymer with 3-MT is prepared indirectly as described above. Its homopolymerization is generally initiated by anions or free radicals. Styrene, however, undergoes a random copolymerization when present during the chemical oxidation of 3-methylthiophene initiated with anhydrous FeCls [73]. Monomer reactivity ratios for the copolymerizations in methylene chloride and nitrobenzene at 5°C are reported, but there is considerable scatter in the Fineman-Ross plots. The proposed structure of the 3-MT/stryrene copolymer is shown in Figure 11.16, where R = H. [Pg.481]

The kinetic scheme for free-radical styrene homopolymerization initiated by a chemical initiator is represented as follows ... [Pg.317]

The elastomer produced in greatest amount is styrene-butadiene rubber (SBR) Annually just under 10 lb of SBR IS produced in the United States and al most all of it IS used in automobile tires As its name suggests SBR is prepared from styrene and 1 3 buta diene It is an example of a copolymer a polymer as sembled from two or more different monomers Free radical polymerization of a mixture of styrene and 1 3 butadiene gives SBR... [Pg.408]

In the presence of peroxides hydrogen bromide adds to the double bond of styrene with a regioselechvity opposite to Markovmkov s rule The reachon is a free radical addi tion and the regiochemistry is governed by preferenhal formation of the more stable radical... [Pg.448]

FIGURE 1111 Cham propagation in polymerization of styrene The growing polymer chain has a free radical site at the benzylic carbon It adds to a molecule of styrene to extend the chain by one styrene unit The new polymer chain is also a benzylic radical it attacks another molecule of styrene and the process repeats over and over again... [Pg.449]

Polymerization of styrene is carried out under free radical conditions often with benzoyl peroxide as the initiator Figure 1111 illustrates a step m the growth of a poly styrene chain by a mechanism analogous to that of the polymerization of ethylene (Sec tion 6 21)... [Pg.449]

Section 1117 Polystyrene is a widely used vinyl polymer prepared by the free radical polymerization of styrene... [Pg.465]

Styrene-butadiene rubber is prepared from the free-radical copolymerization of one part by weight of styrene and three parts by weight of 1,3-butadiene. The butadiene is incorporated by both 1,4-addition (80%) and 1,2-addition (20%). The configuration around the double bond of the 1,4-adduct is about 80% trans. The product is a random copolymer with these general features ... [Pg.1065]

Remember from Sec. 1.3 that graft copolymers have polymeric side chains which differ in the nature of the repeat unit from the backbone. These can be prepared by introducing a prepolymerized sample of the backbone polymer into a reactive mixture—i.e., one containing a source of free radicals—of the side-chain monomer. As an example, consider introducing polybutadiene into a reactive mixture of styrene ... [Pg.394]

Note that this inquiry into copolymer propagation rates also increases our understanding of the differences in free-radical homopolymerization rates. It will be recalled that in Sec. 6.1 a discussion of this aspect of homopolymerization was deferred until copolymerization was introduced. The trends under consideration enable us to make some sense out of the rate constants for propagation in free-radical homopolymerization as well. For example, in Table 6.4 we see that kp values at 60°C for vinyl acetate and styrene are 2300 and 165 liter mol sec respectively. The relative magnitude of these constants can be understod in terms of the sequence above. [Pg.440]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

In all manufacturing processes, grafting is achieved by the free-radical copolymerization of styrene and acrylonitrile monomers in the presence of an elastomer. Ungrafted styrene—acrylonitrile copolymer is formed during graft polymerization and/or added afterward. [Pg.203]

Olig omerization and Polymerization. Siace an aHyl radical is stable, linear a-olefins are not readily polymerized by free-radical processes such as those employed ia the polymerization of styrene. However, ia the presence of Ziegler-Natta catalysts, these a-olefins can be smoothly converted to copolymers of various descriptions. Addition of higher olefins during polymerization of ethylene is commonly practiced to yield finished polymers with improved physical characteristics. [Pg.436]

The reactions of alkyl hydroperoxides with ferrous ion (eq. 11) generate alkoxy radicals. These free-radical initiator systems are used industrially for the emulsion polymerization and copolymerization of vinyl monomers, eg, butadiene—styrene. The use of hydroperoxides in the presence of transition-metal ions to synthesize a large variety of products has been reviewed (48,51). [Pg.104]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Uses. About 35% of the isophthahc acid is used to prepare unsaturated polyester resins. These are condensation products of isophthahc acid, an unsaturated dibasic acid, most likely maleic anhydride, and a glycol such as propylene glycol. The polymer is dissolved in an inhibited vinyl monomer, usually styrene with a quinone inhibitor. When this viscous hquid is treated with a catalyst, heat or free-radical initiation causes cross-linking and sohdification. A range of properties is possible depending on the reactants used and their ratios (97). [Pg.494]

The reaction rate of fumarate polyester polymers with styrene is 20 times that of similar maleate polymers. Commercial phthaHc and isophthaHc resins usually have fumarate levels in excess of 95% and demonstrate full hardness and property development when catalyzed and cured. The addition polymerization reaction between the fumarate polyester polymer and styrene monomer is initiated by free-radical catalysts, commercially usually benzoyl peroxide (BPO) and methyl ethyl ketone peroxide (MEKP), which can be dissociated by heat or redox metal activators into peroxy and hydroperoxy free radicals. [Pg.317]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]


See other pages where Free radical styrene is mentioned: [Pg.188]    [Pg.381]    [Pg.188]    [Pg.7900]    [Pg.7905]    [Pg.120]    [Pg.122]    [Pg.188]    [Pg.381]    [Pg.188]    [Pg.7900]    [Pg.7905]    [Pg.120]    [Pg.122]    [Pg.319]    [Pg.374]    [Pg.412]    [Pg.421]    [Pg.468]    [Pg.318]    [Pg.134]    [Pg.532]    [Pg.453]    [Pg.364]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Free Radical Polymerization of styrene

Free radical copolymerizations with styrene

Free styrene

Free-radical-initiated chain polymerization styrene-acrylonitrile copolymer

Living Free Radical Polymerization of Styrene

Stable free radical polymerization styrene-acrylonitrile

Styrene free radical polymerization

Styrene living free radical

Styrene stable free radical polymerization

Styrene, free-radical copolymerization

Styrene-butadiene copolymers free-radical polymerization production

© 2024 chempedia.info