Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites cumene synthesis

Since zeolite catalysts are successfully introduced in the refining and petrochemical industries, it is not surprising that most of the recent advances concern incremental improvements of existing processes with the development of new generations of catalysts (e.g., dewaxing, ethylbenzene and cumene synthesis). The number of newer applications is much more limited, for example, direct synthesis of phenol from benzene and aromatization of short-chain alkanes, etc. However, both the improvement and development of processes contribute significantly to environmental advances. [Pg.248]

Table 6.5 Selectivity obtained with different zeolite catalysts in cumene synthesis [4]. Table 6.5 Selectivity obtained with different zeolite catalysts in cumene synthesis [4].
Current zeolite catalysts already operate at process temperatures that require minimal external heat addition. Heat integration and heat management will be of increasing concern at the lower benzene to propylene ratios because the cumene synthesis reaction is highly exothermic (AHf= -98 kJ/mole). Recycle, particularly in the alkylation reactor, is likely to become increasingly important as a heat management strategy. The key will be how to limit the build-up of byproducts and feed impurities in these recycle loops, particularly as manufacturers seek cheaper and consequently lower quality feedstocks. As in the case of ethylbenzene, process and catalyst innovations will have to develop concurrently. [Pg.235]

For cumene synthesis through alkylation of benzene by propylene, four dififerent zeolites are used industrially (Table 2) MCM-22, mordenite. Beta, and Y zeolites. The ZSM-5 zeolite caimot be used because of its restrictive pore size. [Pg.1607]

Currently, benzene alkylation to produce ethylbenzene and cumene is routinely carried out using zeohtes. We performed a study comparing a zeohte Y embedded in TUD-1 to a commercial zeolite Y for ethylbenzene synthesis. Two different particle diameters (0.3 and 1.3 mm) were used for each catalyst. In Figure 41.7, the first-order rate constants were plotted versus particle diameter, which is analogous to a linear plot of effectiveness factor versus Thiele modulus. In this way, the rate constants were fitted for both catalysts. [Pg.375]

The catalytic work on the zeolites has been carried out using the pulse microreactor technique (4) on the following reactions cracking of cumene, isomerization of 1-butene to 2-butene, polymerization of ethylene, equilibration of hydrogen-deuterium gas, and the ortho-para hydrogen conversion. These reactions were studied as a function of replacement of sodium by ammonium ion and subsequent heat treatment of the material (3). Furthermore, in some cases a surface titration of the catalytic sites was used to determine not only the number of sites but also the activity per site. Measurements at different temperatures permitted the determination of the absolute rate at each temperature with subsequent calculation of the activation energy and the entropy factor. For cumene cracking, the number of active sites was found to be equal to the number of sodium ions replaced in the catalyst synthesis by ammonium ions up to about 50% replacement. This proved that the active sites were either Bronsted or Lewis acid sites or both. Physical defects such as strains in the crystals were thus eliminated and the... [Pg.136]

With worldwide phenol consumption exceeding 5 million tons in 1995, optimizing production routes of this essential chemical becomes very important. As an alternative to the traditional cumene process, a one-step-synthesis of phenol from benzene is highly desirable. With a ZSM5 type zeolite in its acid form as catalyst and nitrous oxide as oxidant, benzene may be directly oxidized to phenol [1-4] ... [Pg.847]

Following the successful application of zeolites in the major oil refining processes, zeolites entered the field of bulk chemicals synthesis, e.g. ethylbenzene, cumene and recently caprolactam. Their applications in the areas of fine chemicals arc also growing. An important factor is that zeolites, compared to conventional Brocnsted and Lewis acid catalysts, are low-waste catalysts and are regarded as green . After the early review on zeolite-catalyzed organic reactions by Venuto and Landis [ 1J the field has been reviewed several times [2-11],... [Pg.312]

A method is described for the preparation of zinc-containing zeolite by direct synthesis from hydrogels. The synthesis of Zn-MFI type zeolite materials and the post synthesis introduction of Cu are discussed. The samples are characterized by XRD, AAS, thermal analysis, SEM and Si-NMR spectroscopy. The catalytic results on the cumene conversion are discussed. [Pg.337]

The two most important applications in this field are the synthesis of ethylbenzene and cumene, in which zeolites replaced the former liquid HF and AICI3 catalysts. [Pg.1607]

Hydroperoxidative synthesis 4 (Figure 12.4, middle) accounts for approximately 2.5 x 10 kg of hydroquinone production per year. p-Diisopropylbenzene is synthesized by zeolite-catalyzed Friedel-Crafts reaction of benzene or cumene with propylene or isopropanol. Air oxidation of p-diisopropyl-benzene proceeds at 90-100°C in an aqueous NaOH solution containing organic bases along with cobalt... [Pg.202]

The aromatics alkylation with olefins is a well-known technology, especially in the case of ethylbenzene (a Mobil-Badger process [109]) and cumene production [110], Ethylbenzene synthesis can be catalyzed by diverse modified HZSM-5, BEA, rare-earth Y, and MCM-22 zeohtes. In most cases, the selectivity is pretty high (99%), but the process must be carried out at a large excess of benzene and the conversion of the latter typically does not exceed 20-25% at 400°C and WHSV= 3 h . For cumene production, a few commercial processes have been developed by CD-Tech (Y zeolite), Lummus-Unocal (Y zeolite), Enichem (H-BEA), Mobil-Raytheon (MCM-22), Dow Chemical (dealuminated mordenite (MOR)), and UOP (a Q-Max process with MgSAPO-31). [Pg.340]


See other pages where Zeolites cumene synthesis is mentioned: [Pg.381]    [Pg.23]    [Pg.235]    [Pg.399]    [Pg.356]    [Pg.244]    [Pg.90]    [Pg.123]    [Pg.493]    [Pg.294]    [Pg.177]    [Pg.547]    [Pg.604]    [Pg.257]    [Pg.276]    [Pg.333]   
See also in sourсe #XX -- [ Pg.175 , Pg.178 ]




SEARCH



Cumene

Cumene synthesis

Cumenes

Zeolites synthesis

Zeolitic synthesis

© 2024 chempedia.info