Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides, formation reactions

Fig. 9.1. Representative phosphonium, sulfonium, and sulfoxonium ylides— formation reactions and valence bond formulas. Fig. 9.1. Representative phosphonium, sulfonium, and sulfoxonium ylides— formation reactions and valence bond formulas.
Halofluoroalkenes may be prepared by using fluorodihalomethanes or fluoro-halomethanes in olefination procedures similar to those descnbed above. Ruoro-trichloromethane treated with tris(dimethylamino)phosphine forms the corresponding phosphomum salt, which can then be used in the Wirtig procedure. The reaction depends on the nature of the solvent in tetrahydrofuran, little olefination if any occurs however, when benzomtrile is added to the mixture, ylide formation is promoted [50] (equation 48) (Table 19). [Pg.587]

The rhodium-catalyzed tandem carbonyl ylide formation/l,3-dipolar cycloaddition is an exciting new area that has evolved during the past 3 years and high se-lectivities of >90% ee was obtained for both intra- and intermolecular reactions with low loadings of the chiral catalyst. [Pg.245]

There are four main factors that affect the enantioselectivity of sulfur ylide-mediated reactions i) the lone-pair selectivity of the sulfonium salt formation, ii) the conformation of the resulting ylide, iii) the face selectivity of the ylide, and iv) betaine reversibility. [Pg.10]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

Transition metal-catalyzed carbenoid transfer reactions, such as alkene cyclopro-panation, C-H insertion, X-H insertion (X = heteroatom), ylide formation, and cycloaddition, are powerful methods for the construction of C-C and C-heteroatom bonds [1-6]. In contrast to a free carbene, metallocarbene-mediated reactions often proceed stereo- and regioselectively under mild conditions with tolerance to a wide range of functionalities. The reactivity and selectivity of metallocarbenes can be... [Pg.112]

Based on this work, it has been proposed that a specifically solvated carbene (Scheme 4.6, Reaction 2) nndergoes bimolecular reactions at slower rates than a free carbene (Scheme 4.6, Reaction 1). Other alternatives that mnst be considered are participation of rapid and reversible ylide formation with the ylide acting as a... [Pg.198]

Alkyltriphenylphosphonium halides are only weakly acidic, and a strong base must be used for deprotonation. Possibilities include organolithium reagents, the anion of dimethyl sulfoxide, and amide ion or substituted amide anions, such as LDA or NaHMDS. The ylides are not normally isolated, so the reaction is carried out either with the carbonyl compound present or with it added immediately after ylide formation. Ylides with nonpolar substituents, e.g., R = H, alkyl, aryl, are quite reactive toward both ketones and aldehydes. Ylides having an a-EWG substituent, such as alkoxycarbonyl or acyl, are less reactive and are called stabilized ylides. [Pg.159]

The stereoselectivity of the Wittig reaction is believed to be the result of steric effects that develop as the ylide and carbonyl compound approach one another. The three phenyl substituents on phosphorus impose large steric demands that govern the formation of the diastereomeric adducts.240 Reactions of unstabilized phosphoranes are believed to proceed through an early TS, and steric factors usually make these reactions selective for the d.v-alkcnc.241 Ultimately, however, the precise stereoselectivity is dependent on a number of variables, including reactant structure, the base used for ylide formation, the presence of other ions, solvent, and temperature.242... [Pg.159]

Rhodium(II) acetate was found to be much more superior to copper catalysts in catalyzing reactions between thiophenes and diazoesters or diazoketones 246 K The outcome of the reaction depends on the particular diazo compound 246> With /-butyl diazoacetate, high-yield cydopropanation takes place, yielding 6-eco-substituted thiabicyclohexene 262. Dimethyl or diethyl diazomalonate, upon Rh2(OAc)4-catalysis at room temperature, furnish stable thiophenium bis(alkoxycarbonyl)methanides 263, but exclusively the corresponding carbene dimer upon heating. In contrast, only 2-thienylmalonate (36 %) and carbene dimer were obtained upon heating the reactants for 8 days in the presence of Cul P(OEt)3. The Rh(II)-promoted ylide formation... [Pg.183]

Some functionalized thiophenes have been investigated in order to assess the scope of ylide-derived chemistry. As already mentioned, 2-(hydroxymethyl)thiophene still gives the S-ylide upon Rh2(OAe)4-catalyzed reaction with dimethyl diazomalonate 146 but O/H insertion instead of ylide formation seems to have been observed by other workers (Footnote 4 in Ref. 2S4)). From the room temperature reaction of 2-(aminomethyl)thiophene and dimethyl diazomalonate, however, salt 271 was isolated quite unexpectedly 254). Rh2(OAc)4, perhaps deactivated by the substrate, is useless in terms of the anticipated earbenoid reactions. Formation of a diazo-malonic ester amide and amine-catalyzed cyclization to a 5-hydroxytriazole seem to take place instead. [Pg.186]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

The reaction of carbenes or carbenoids with compounds containing S—S bonds is likely to begin with sulfonium ylide formation subsequent [1,2] rearrangement then produces a formal insertion product of the carbene moiety into the S—S bond152 b). [Pg.220]

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

The Ge(TMTAA) complex and the well known Sn(TMTAA) complex undergo facile oxidative addition reactions and reverse ylide formation with Mel and C6F5I because of the reactive M(II) (M = Sn, Ge) lone pair of electrons. In case of the oxidation with Mel it was assumed that, in solution, an ionic-covalent equilibrium exists (equation 48)95. [Pg.555]

Relative rates of some prototypical carbenes, obtained by Stem-Volmer methods, are listed in Table 2. Although many of these carbenes have triplet ground states, reaction with nucleophiles Y occurs prior to spin equilibration. Most often, ylide formation with solvent molecules was analysed in terms of Eq. 3. The pyridine-ylide served as the probe for 154. [Pg.30]

Ifcobs is directly proportional to pyridine concentration. Therefore a plot of kobs vs. [pyridine] is linear, with a slope (k ) equal to the second order rate constant for ylide formation, and an intercept (k0) equal to the sum of all processes that destroy the carbene in the absence of pyridine (e.g.) intramolecular reactions, carbene dimerization, reactions with solvent, and, in the case of diazirine or diazo carbene precursors, azine formation. [Pg.54]

Here the alkene and pyridine will compete for the carbene at a constant concentration of pyridine the observed pseudo first order rate constant for ylide formation will increase with increasing alkene concentration. A plot of kobs vs. [alkene] will be linear with a slope of kad, which is the rate constant for the carbene/alkene addition reaction affording cyclopropane 5 (Scheme 1). [Pg.56]

An alternative to the synthesis of epoxides is the reaction of sulfur ylide with aldehydes and ketones.107 This is a carbon-carbon bond formation reaction and may offer a method complementary to the oxidative processes described thus far. The formation of sulfur ylide involves a chiral sulfide and a carbene or carbenoid, and the general reaction procedure for epoxidation of aldehydes may involve the application of a sulfide, an aldehyde, or a carbene precursor as well as a copper salt. This reaction may also be considered as a thiol acetal-mediated carbene addition to carbonyl groups in the aldehyde. [Pg.249]

The intramolecular addition of acylcarbene complexes to alkynes is a general method for the generation of electrophilic vinylcarbene complexes. These reactive intermediates can undergo inter- or intramolecular cyclopropanation reactions [1066 -1068], C-H bond insertions [1061,1068-1070], sulfonium and oxonium ylide formation [1071], carbonyl ylide formation [1067,1069,1071], carbene dimerization [1066], and other reactions characteristic of electrophilic carbene complexes. [Pg.177]

Acceptor-substituted carbene complexes are highly reactive intermediates, capable of transforming organic compounds in many different ways. Typical reactions include insertion into o-bonds, cyclopropanation, and ylide formation. Generally, acceptor-substituted carbene complexes are not isolated and used in stoichiometric amounts, but generated in situ from a carbene precursor and transition metal derivative. Usually only catalytic quantities of a transition metal complex are required for complete conversion of a carbene precursor via an intermediate carbene complex into the final product. [Pg.178]

Several examples have been reported for furanone formation by intramolecular C-H insertion of electrophilic carbene complexes [1006,1148] (Table 4.7). Yields can, however, be low with some substrates, possibly as a result of several potential side-reactions. Oxonium ylide formation and hydride abstraction, in particular, [1090,1149-1152] (see Section 4.2.9) seem to compete efficiently with the formation of some types of furanones. [Pg.187]

Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]

If chiral catalysts are used to generate the intermediate oxonium ylides, non-racemic C-O bond insertion products can be obtained [1265,1266]. Reactions of electrophilic carbene complexes with ethers can also lead to the formation of radical-derived products [1135,1259], an observation consistent with a homolysis-recombination mechanism for 1,2-alkyl shifts. Carbene C-H insertion and hydride abstraction can efficiently compete with oxonium ylide formation. Unlike free car-benes [1267,1268] acceptor-substituted carbene complexes react intermolecularly with aliphatic ethers, mainly yielding products resulting from C-H insertion into the oxygen-bound methylene groups [1071,1093]. [Pg.205]

If acceptor-substituted carbene complexes are generated in the presence of thioethers, ylide formation is generally the mostly favored process. The resulting sulfonium ylides are often sufficiently stable to be isolated [975,1307-1309]. Typical reactions of sulfonium ylides include 1,2-alkyl migration, leading to products of... [Pg.213]

Ab initio and RRKM calculations indicate that the reactions of C, CH, and (H2C ) with acetylene occur with no barrier." Laser flash photolysis of the cyclopropanes (69) and (70) was used to generate the corresponding dihalocarbenes. The absolute rate constant for the formation of a pyridine ylide from Br2C was (4-11) x 10 lmoP s. The rates of additions of these carbenes to alkenes were measured by competition with pyridine ylide formation and the reactivity of BrClC was found to resemble that of Br2C rather than CI2C . [Pg.262]


See other pages where Ylides, formation reactions is mentioned: [Pg.3]    [Pg.377]    [Pg.377]    [Pg.3]    [Pg.377]    [Pg.377]    [Pg.133]    [Pg.25]    [Pg.28]    [Pg.867]    [Pg.4]    [Pg.12]    [Pg.128]    [Pg.533]    [Pg.535]    [Pg.536]    [Pg.134]    [Pg.184]    [Pg.268]    [Pg.280]    [Pg.31]    [Pg.56]    [Pg.264]    [Pg.178]    [Pg.24]    [Pg.22]    [Pg.394]   
See also in sourсe #XX -- [ Pg.62 ]

See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Cascade reactions ylide formation

Formation and Reactions of Ylides

Phosphonium ylides formation reaction

Reaction Initiated by Carbonyl Ylide Formation

Sulfonium ylides formation reaction

Sulfoxonium ylides formation reaction

Ylide formation

Ylide reaction

Ylides reaction

Ylides, formation

© 2024 chempedia.info