Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xylenes Mobil xylene isomerization process

Figure 2-3. Flow diagram of the Mobil xylene isomerization process. ... Figure 2-3. Flow diagram of the Mobil xylene isomerization process. ...
The three major commercial Hcensors of xylenes isomerization processes are Engelhard, UOP, and Mobil. Several other companies have developed and used their own catalysts. These companies include Mitsubishi Gas—Chemical, Toray, ICI, Amoco, and Shell. AH of these processes are discussed herein. [Pg.421]

Zeolite and Molecular Sieve-Based Process. Mobil has commercialized several xylene isomerization processes that are based on ZSM-5. Amoco has developed a process based on a medium-pore borosiUcate molecular sieve. [Pg.422]

Mobil Chemical has devdoped a xylene isomerization process called LTI (Low Temperature Isomerization) whick in the liquid phase, uses qsedal zeolites as catalysts (ZSM5), commercialized by the designation AP (Aromatics Processing These systems are more active than those the REX type, which are generally proposed for vapor phase operation. [Pg.281]

Mobil s Low Pressure Isomerization Process (MLPI) was developed in the late 1970s (123,124). Two unique features of this process are that it is Operated at low pressures and no hydrogen is used. In this process, EB is converted to benzene and diethylbenzene via disproportionation. The patent beheved to be the basis for the MLPI process (123) discusses the use of H-ZSM-5 zeoHte with an alumina binder. The reaction conditions described are start-of-mn temperatures of 290—380°C, a pressure of 273 kPa and WHSV of 5—8.5/h. The EB conversion is about 25—40% depending on reaction conditions, with xylene losses of 2.5—4%. The PX approach to equiHbrium is about 99 ndash 101%. The first commercial unit was Hcensed in 1978. A total of four commercial plants have been built. [Pg.422]

A second Mobil process is the Mobil s Vapor Phase Isomerization Process (MVPI) (125,126). This process was introduced in 1973. Based on information in the patent Hterature (125), the catalyst used in this process is beHeved to be composed of NiHZSM-5 with an alumina binder. The primary mechanism of EB conversion is the disproportionation of two molecules of EB to one molecule of benzene and one molecule of diethylbenzene. EB conversion is about 25—40%, with xylene losses of 2.5—4%. PX is produced at concentration levels of 102—104% of equiHbrium. Temperatures are in the range of 315—370°C, pressure is generally 1480 kPa, the H2/hydrocatbon molar ratio is about 6 1, and WHSV is dependent on temperature, but is in the range of 2—50, although normally it is 5—10. [Pg.422]

J. R. Gieen, "The Mobil High Tempeiatuie Xylene Isomerization (MHTl) Process," 1988 Petrochemical Review, DeWitt Company, Houston, Tex., Mai. 23-25, 1988. [Pg.55]

Another example of catalytic isomerization is the Mobil Vapor-Phase Isomerization process, in which -xylene is separated from an equiHbrium mixture of Cg aromatics obtained by isomerization of mixed xylenes and ethylbenzene. To keep xylene losses low, this process uses a ZSM-5-supported noble metal catalyst over which the rate of transalkylation of ethylbenzene is two orders of magnitude larger than that of xylene disproportionation (12). [Pg.201]

The catalysts for xylene isomerization with EB dealkylahon are dominated by MFI zeolite. The de-ethylation reaction is particularly facile over this zeolite. There have been several generations of catalyst technology developed by Mobil, now ExxonMobil [84]. The features in their patents include selectivation and two-catalyst systems in which the catalysts have been optimized separately for deethylation of EB and xylene isomerization [85-87]. The crystallite size used for de-ethylation is significantly larger than in the second catalyst used for xylene isomerization. Advanced MHAI is one example. The Isolene process is offered by Toray and their catalyst also appears to be MFI zeoUte-based, though some patents claim the use of mordenite [88, 89]. The metal function favored in their patents appears to be rhenium [90]. Bimetallic platinum catalysts have also been claimed on a variety of ZSM-type zeolites [91]. There are also EB dealkylation catalysts for the UOP Isomar process [92]. The zeolite claimed in UOP patents is MFI in combination with aluminophosphate binder [93]. [Pg.497]

The early sihca/alumina catalysts for the isomerization of xylene suffered from deactivation due to the deposition of carbon and the needed frequent regeneration. The process was improved by both the use of catalysts impregnated with platinum and the addition of hydrogen to the reactants, and thrrs led to a reduction in the need for frequent regeneration. These catalysts also converted ethyl benzene to xylenes. High-silica zeolites are now used to produce most of the />-xylene obtained by isomerization, because high selectivity can be achieved of equilibrium conversion. Mobil ZSM-5 is particularly useful because the pore size promotes paraselectivity and controls the unwanted disproportionation reac-... [Pg.293]

Mobil s High Temperature Isomerization (MHTI) process, which was introduced in 1981, uses Pt on an acidic ZSM-5 zeoHte catalyst to isomerize the xylenes and hydrodealkylate EB to benzene and ethane (126). This process is particularly suited for unextracted feeds containing Cg aHphatics, because this catalyst is capable of cracking them to light paraffins. Reaction occurs in the vapor phase to produce a PX concentration slightly higher than equiHbrium, ie, 102—104% of equiHbrium. EB conversion is about 40—65%, with xylene losses of about 2%. Reaction conditions ate temperature of 427—460°C, pressure of 1480—1825 kPa, WHSV of 10—12, and a H2/hydtocatbon molar ratio of 1.5—2 1. Compared to the MVPI process, the MHTI process has lower xylene losses and lower formation of heavy aromatics. [Pg.422]

Xylenes. The main appHcation of xylene isomers, primarily p- and 0-xylenes, is in the manufacture of plasticizers and polyester fibers and resins. Demands for xylene isomers and other aromatics such as benzene have steadily been increasing over the last two decades. The major source of xylenes is the catalytic reforming of naphtha and the pyrolysis of naphtha and gas oils. A significant amount of toluene and Cg aromatics, which have lower petrochemical value, is also produced by these processes. More valuable p- or 0-xylene isomers can be manufactured from these low value aromatics in a process complex consisting of transalkylation, eg, the Tatoray process and Mobil s toluene disproportionation (M lDP) and selective toluene disproportionation (MSTDP) processes isomerization, eg, the UOP Isomar process (88) and Mobil s high temperature isomerization (MHTI), low pressure isomerization (MLPI), and vapor-phase isomerization (MVPI) processes (89) and xylene isomer separation, eg, the UOP Parex process (90). [Pg.52]

MHTI [Mobil high temperature isomerization] A process for converting mixed xylene streams to />-xylene. The catalyst is the zeolite ZSM-5. Developed by Mobil Research Development Corporation and first commercialized in 1981. Eleven units were operating as of 1991. See also MLPI and MVPI. [Pg.177]

MLPI [Mobil low pressure isomerization] One of a family of processes developed by Mobil Corporation for isomerizing xylene mixtures, using a zeolite catalyst. This one was developed in 1977. See also LTI, MHTI, MVPI. [Pg.179]

MVPI [Mobil Vapor Phase Isomerization] A process for converting mixed xylene streams to p-xylene, catalyzed by the zeolite ZSM-5. Invented by Mobil Corporation in 1973, later superseded by MHTI. See also LTI, MHTI, MLPI. [Pg.250]


See other pages where Xylenes Mobil xylene isomerization process is mentioned: [Pg.191]    [Pg.40]    [Pg.50]    [Pg.191]    [Pg.206]    [Pg.207]    [Pg.120]    [Pg.355]    [Pg.284]    [Pg.285]    [Pg.1036]    [Pg.167]    [Pg.422]    [Pg.71]    [Pg.422]    [Pg.422]    [Pg.328]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Isomerization process

Isomerization, xylene

Mobil process

Process isomerism

Xylenes, Isomeric

© 2024 chempedia.info