Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With mercury complexes

The discovery of aqua regia by the Arab alchemist Jabir Ibn Hayyan (ad 720—813) provided a new extraction technology. Amalgamation of silver in ores with mercury was extensively used during the late fifteenth century by the Spaniards in Mexico and BoLvia. In 1861 the complex ores of the Comstock Lode, Nevada, were ground together with mercury, salt, copper sulfate, and sulfuric acid, and then steam-heated to recover the silver. [Pg.83]

Dimethylpyrazole (L) reacts with mercury(II) chloride to give complexes of the structure L2(HgCl2)3. In connection with metallotropy (Section 4.04.1.5.1) the behaviour of compounds (295) has been described. These phenylmercury derivatives were synthesized by the action of phenylmercury hydroxide on the appropriate pyrazole (71MI40400). [Pg.236]

The most general method for synthesis of cyclic enamines is the oxidation of tertiary amines with mercuric acetate, which has been investigated primarily by Leonard 111-116) and applied in numerous examples of structural investigation and in syntheses of alkaloids 102,117-121). The requirement of a tram-coplanar arrangement of an a proton and mercury complexed on nitrogen, in the optimum transition state, confers valuable selectivity to the reaction. It may thus be used as a kinetic probe for stereochemistry as well as for the formation of specific enamine isomers. [Pg.325]

Due to the relatively high acidities of their hydroxy groups, hydroxyazoles readily exchange their protons with metal ions, which leads to stabilization of metal derivatives of the hydroxy tautomeric forms in metal coordination compounds of 2(5)-oxoazoles [97UK434 98AHC(72)1]. A typical example is the mercury complex 361 [93JCS(D)1003]. [Pg.288]

Complex [(CXI )Ir(/j,-pz)(/i,-SBu )(/j,-Ph2PCH2PPh2)Ir(CO)] reacts with iodine to form 202 (X = I) as the typical iridium(II)-iridium(II) symmetrical species [90ICA(178)179]. The terminal iodide ligands can be readily displaced in reactions with silversalts. Thus, 202 (X = I), upon reaction with silver nitrate, produces 202 (X = ONO2). Complex [(OC)Ir(/i,-pz )(/z-SBu )(/i-Ph2PCH2PPh2)Ir(CO)] reacts with mercury dichloride to form 203, traditionally interpreted as the product of oxidative addition to one iridium atom and simultaneous Lewis acid-base interaction with the other. The rhodium /i-pyrazolato derivative is prepared in a similar way. Unexpectedly, the iridium /z-pyrazolato analog in similar conditions produces mercury(I) chloride and forms the dinuclear complex 204. [Pg.208]

Interaction of iron(II) chloride with the lithium salt of R4B2NJ (R = Me, Et) gives sandwiches 61 (R = Me, Et) (67ZAAC1, 96MI4), resembling in electronic properties those of ferrocene (99ICA(288)17). The n- rf-) complex stems from the further complex-formation of 61 (R = Me, Et) with mercury(II) salts via the unsubstituted nitrogen atom. [Pg.24]

Discussion. Potassium may be precipitated with excess of sodium tetraphenyl-borate solution as potassium tetraphenylborate. The excess of reagent is determined by titration with mercury(II) nitrate solution. The indicator consists of a mixture of iron(III) nitrate and dilute sodium thiocyanate solution. The end-point is revealed by the decolorisation of the iron(III)-thiocyanate complex due to the formation of the colourless mercury(II) thiocyanate. The reaction between mercury( II) nitrate and sodium tetraphenylborate under the experimental conditions used is not quite stoichiometric hence it is necessary to determine the volume in mL of Hg(N03)2 solution equivalent to 1 mL of a NaB(C6H5)4 solution. Halides must be absent. [Pg.359]

Gold(I) ylides are oxidized in 0.1 M [Bu4N]BF4/THFat low potentials of +0.11 and + 0.23 V vs. Ag/AgCl (quasi-reversible). The dinuclear amidinate oxidizes under the same conditions at + 1.24 V vs. Ag/AgCl (reversible). These large differences in chemical character of the dinuclear gold(I) complexes appear to explain the widely different behavior of these compounds and especially toward the reaction with mercury cyanide. [Pg.15]

Mercury is a classical test to identify heterogeneous catalysts (bulk metal or colloids) due to its ability to poison metal(O) heterogeneous catalysts by formation of amalgam or adsorption on the metal surface [23]. If the catalytic activity remains unaffected when mercury is present, this fact represents an evidence for a homogeneous catalyst. But mercury can induce side reactions [23c] and also react with some molecular complexes [23c,24]. Consequently, the results obtained with mercury are not enough to conclude about the catalyst nature. From a practical point of view, it is important to use a large excess of Hg(0) with respect to the catalyst to favour the contact with it. [Pg.429]

Bebout DC, Berry SM (2006) Probing Mercury Complex Speciation with Multinuclear NMR 120 81-105... [Pg.219]

Zinc dithiocarbamates have been used for many years as antioxidants/antiabrasives in motor oils and as vulcanization accelerators in rubber. The crystal structure of bis[A, A-di- -propyldithio-carbamato]zinc shows identical coordination of the two zinc atoms by five sulfur donors in a trigonal-bipyramidal environment with a zinc-zinc distance of 3.786 A.5 5 The electrochemistry of a range of dialkylthiocarbamate zinc complexes was studied at platinum and mercury electrodes. An exchange reaction was observed with mercury of the electrode.556 Different structural types have been identified by variation of the nitrogen donor in the pyridine and N,N,N, N -tetra-methylenediamine adducts of bis[7V,7V-di- .vo-propyldithiocarbamato]zinc. The pyridine shows a 1 1 complex and the TMEDA gives an unusual bridging coordination mode.557 The anionic complexes of zinc tris( V, V-dialkyldithiocarbamates) can be synthesized and have been spectroscopically characterized.558... [Pg.1196]

Mass spectrometry (MS) in its various forms, and with various procedures for vaporization and ionization, contributes to the identification and characterization of complex species by their isotopomer pattern of the intact ions (usually cation) and by their fragmentation pattern. Upon ionization by the rough electron impact (El) the molecular peak often does not appear, in contrast to the more gentle field desorption (FD) or fast-atom bombardment (FAB) techniques. An even more gentle way is provided by the electrospray (ES) method, which allows all ionic species (optionally cationic or anionic) present in solution to be detected. Descriptions of ESMS and its application to selected problems are published 45-47 also a representative application of this method in a study of phosphine-mercury complexes in solution is reported.48... [Pg.1256]

The benzeneselenolates of mercury, [Hg(SePh)2] and (Bu4N)[Hg(SePh)3], both adopt simple structures, with mononuclear complex entities which posses near-linear Se—Hg—Se and near trigonal-planar HgSe3 cores, respectively.335... [Pg.1283]

Penicillamine is known to form complexes of varying stability with several metal ions. In neutral solution, penicillamine complexes with mercury, lead, nickel, and copper are relatively more stable than those of zinc, iron, and manganese. The three functional groups of penicillamine may be engaged in the formation of metal complex, and the resultant compounds may be polymeric in structure. [Pg.127]

To increase precursor volatility, interest focused on using ligands of considerable bulk to reduce the degree of molecular association. This was of limited success, with mercury proving to be an exception. Bradley and Kunchur218 reported that Hg(SBu )2 has only weak intermolecular interactions and occurs as discrete Hg(SR)2 units even in the solid state. Other attempts to prepare complexes of zinc or cadmium with limited degrees of polymerization have been undertaken. [Pg.1034]

Organic compounds such as terminal alkynes can undergo direct mercuration using various mercury salts. For instance, alkyne 61 has been shown to react with Hg(OAc)2 to form the symmetrical bis-alkyl-mercury complex 62 (Equation (21)).73... [Pg.428]

The reaction of tetraethynylplatinum derivatives with mercury dihalide in acetone affords complexes 156 and 157 in which the mercury centers are coordinated to two neighboring mercury alkynyl functionalities.194 195 In turn, each alkynyl functionality interacts with the mercury center in an 7]Z-fashion. For complexes 156 and 157, the resulting Hg-Cjp bonds, which range from 2.41 to 2.77 A, are longer than typical Hg-C cr-bonds but shorter that those observed in 154. In 156, the greater flexibility of the structure allows for the formation of shorter Hg-C(.r/>) bonds than in 157 (av. Hg-C(.r/>) = 2.52 A for 156 and 2.64A for 157). The formation of such complexes is not limited to the case of... [Pg.448]

Longer Hg-7r interactions are observed in the /> ra-/-butylcalix[4]arene mercury complex 162. The mercury atom forms primary bonds with the two sulfur atoms and engages in weaker secondary interactions with two arene rings of the calixarene whose centroids sit at 3.07-3.11 A from the metal center.201... [Pg.449]

Mercury Mercury complexed with ammonium tetra methylene- Chloroform extract analysed by < 5 ng/1 Hg absolute dithiocarbamate, extracted with chloroform graphite tube AAS... [Pg.295]


See other pages where With mercury complexes is mentioned: [Pg.132]    [Pg.132]    [Pg.388]    [Pg.365]    [Pg.109]    [Pg.74]    [Pg.142]    [Pg.148]    [Pg.225]    [Pg.586]    [Pg.681]    [Pg.862]    [Pg.44]    [Pg.110]    [Pg.298]    [Pg.64]    [Pg.202]    [Pg.396]    [Pg.1262]    [Pg.1267]    [Pg.137]    [Pg.235]    [Pg.429]    [Pg.444]    [Pg.444]    [Pg.41]    [Pg.333]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Complexation with mercury

Mercury complexes

Mercury complexing

© 2024 chempedia.info