Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wetting constant

Figure 8 Plot of adhesive strength versus wetting constant (taken from reference 15). x->epoxy urea melamine resins, 0> other resins. Figure 8 Plot of adhesive strength versus wetting constant (taken from reference 15). x->epoxy urea melamine resins, 0> other resins.
Figure 2.8 Joint strength versus wetting constant, k2, for a series of thermosetting resin/polyethylene joints [144]. Figure 2.8 Joint strength versus wetting constant, k2, for a series of thermosetting resin/polyethylene joints [144].
As illustrated in Fig. XU-13, a drop of water is placed between two large parallel plates it wets both surfaces. Both the capillary constant a and d in the figure are much greater than the plate separation x. Derive an equation for the force between the two plates and calculate the value for a 1-cm drop of water at 20°C, with x = 0.5, 1, and 2 mm. [Pg.459]

Flough D B and White L R 1980 The calculation of Flamaker constants from Lifshitz theory with applications to wetting phenomena Adv. Colloid Interface Sc/. 14 3-41... [Pg.2695]

We consider a finite space, which contains the NA sample and is in contact with a bath of water or water vapor. That allows one to maintain the r.h. in the experimental space at a constant level and change it when necessary. Such a scheme corresponds to the real experiments with wet NA samples. A NA molecule is simulated by a sequence of units of the same type. Thus, in the present study, we consider the case of a homogeneous NA or the case where averaging over the unit type is possible. Every unit can be found in the one of three conformational states unordered. A- or B- conformations. The units can reversibly change their conformational state. A unit corresponds to a nucleotide of a real NA. We assume that the NA strands do not diverge during conformational transitions in the wet NA samples [18]. The conformational transitions are considered as cooperative processes that are caused by the unfavorable appearance of an interface between the distinct conformations. [Pg.118]

Place 84 g. of iron filings and 340 ml. of water in a 1 - 5 or 2-litre bolt-head flask equipped with a mechanical stirrer. Heat the mixture to boiling, stir mechanically, and add the sodium m-nitrobenzenesulphonate in small portions during 1 hour. After each addition the mixture foams extensively a wet cloth should be applied to the neck of the flask if the mixture tends to froth over the sides. Replace from time to time the water which has evaporated so that the volume is approximately constant. When all the sodium salt has been introduced, boU the mixture for 20 minutes. Place a small drop of the suspension upon filter paper and observe the colour of the spot it should be a pale brown but not deep brown or deep yellow. If it is not appreciably coloured, add anhydrous sodium carbonate cautiously, stirring the mixture, until red litmus paper is turned blue and a test drop upon filter paper is not blackened by sodium sulphide solution. Filter at the pump and wash well with hot water. Concentrate the filtrate to about 200 ml., acidify with concentrated hydrochloric acid to Congo red, and allow to cool. Filter off the metanilic acid and dry upon filter paper. A further small quantity may be obtained by concentrating the mother liquid. The yield is 55 g. [Pg.589]

Table 11.4 Solutions for Maintaining Constant Humidity Table 11.5 Concentration of Solutions of H2SO4, NaOH, and CaCi2 Giving Specified Vapor Pressures and Percent Humidities at 25°C Table 11.6 Relative Humidity from Wet and Dry Bulb Thermometer Readings Table 11.7 Relative Humidity from Dew Point Readings... Table 11.4 Solutions for Maintaining Constant Humidity Table 11.5 Concentration of Solutions of H2SO4, NaOH, and CaCi2 Giving Specified Vapor Pressures and Percent Humidities at 25°C Table 11.6 Relative Humidity from Wet and Dry Bulb Thermometer Readings Table 11.7 Relative Humidity from Dew Point Readings...
Scmbbers make use of a combination of the particulate coUection mechanisms Hsted in Table 5. It is difficult to classify scmbbers predominantly by any one mechanism but for some systems, inertial impaction and direct interception predominate. Semrau (153,262,268) proposed a contacting power principle for correlation of dust-scmbber efficiency the efficiency of coUection is proportional to power expended and more energy is required to capture finer particles. This principle is appHcable only when inertial impaction and direct interception are the mechanisms employed. Eurthermore, the correlation is not general because different parameters are obtained for differing emissions coUected by different devices. However, in many wet scmbber situations for constant particle-size distribution, Semrau s power law principle, roughly appHes ... [Pg.407]

Additive packages have been developed which do an exceUent job of preventing IVD. The key to effective operation is to keep the valve wet so that the additive can prevent deposit buildup. Most packages include a combination of detergent/dispersant and a carrier oil or heavy solvent. If no carrier oil is present, then the fuel may evaporate off the valve too rapidly for the package to be effective. When the valves do not rotate, the portion of the valve which has the highest deposit level is the back side which is not constantly wet. [Pg.187]

The time constants characterizing heat transfer in convection or radiation dominated rotary kilns are readily developed using less general heat-transfer models than that presented herein. These time constants define simple scaling laws which can be used to estimate the effects of fill fraction, kiln diameter, moisture, and rotation rate on the temperatures of the soHds. Criteria can also be estabHshed for estimating the relative importance of radiation and convection. In the following analysis, the kiln wall temperature, and the kiln gas temperature, T, are considered constant. Separate analyses are conducted for dry and wet conditions. [Pg.49]

Because many pesticides are appHed to the soil surface, the transport of pesticide during water infiltration is important. Water infiltration is characterized by high initial infiltration rates which decrease rapidly to a nearly constant rate. Dry soils have greater rates of infiltration than wet soils during the initial appHcation of water. Thus, perfluridone movement after appHcation of 3.8 cm of water was considerably greater in soil at a water content of <1% of field capacity than at 50% of field capacity (62). Fluometuron moved deeper into the soil in response to greater rainfall intensity or after rainfall onto a dry rather than a moist soil (63). [Pg.223]

Wet basis is a material s moisture coateat expressed as a perceatage of the weight of wet material. Although commonly employed, this basis is less satisfactory for dryiag calculatioas than the dry basis for which the percentage change of moisture per unit weight of dry material is constant at aH moisture contents. [Pg.238]

In Figure 2 the lines, volume, m /kg dry air, indicate humid volume, which includes the volume of 1.0 kg of dry gas plus the volume of vapor it carries. Enthalpy at saturation data are accurate only at the saturation temperature and humidity however, for air—water vapor mixtures, the diagonal wet bulb temperature lines are approximately the same as constant-enthalpy adiabatic cooling lines. The latter are based on the relationship ... [Pg.239]


See other pages where Wetting constant is mentioned: [Pg.35]    [Pg.153]    [Pg.36]    [Pg.45]    [Pg.35]    [Pg.153]    [Pg.36]    [Pg.45]    [Pg.102]    [Pg.2937]    [Pg.117]    [Pg.839]    [Pg.260]    [Pg.375]    [Pg.386]    [Pg.402]    [Pg.412]    [Pg.280]    [Pg.306]    [Pg.429]    [Pg.66]    [Pg.214]    [Pg.20]    [Pg.249]    [Pg.542]    [Pg.548]    [Pg.99]    [Pg.381]    [Pg.98]    [Pg.115]    [Pg.128]    [Pg.336]    [Pg.200]    [Pg.305]    [Pg.316]    [Pg.367]    [Pg.23]    [Pg.58]    [Pg.240]    [Pg.240]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



© 2024 chempedia.info