Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weak acids determination

At the equivalence point, hydrolysis of the anion of the weak acid determines the pH. [Pg.813]

The molecular structure of a weak acid determines the extent to which the acid ionizes in water. Figure 14.14 shows the variety of structures of some common weak acids. [Pg.499]

The results of recent determinations of the thermodynamic ionization constants of weak acids determined from conductance measurements which have been interpreted substantially as described above, are given in Table VIII. The relations of some of these values to the molecular structures of the corresponding compounds are discussed in Chapter 21. [Pg.348]

The laboratory will focus on the operational aspects of pH measurement. It is appropriate that we start this course with pH because this parameter is so fundamental to the physical-chemical phenomenon that occurs in aqueous solutions. The pH of a solution which contains a weak acid determines the degree of ionization of that weak acid. Of environmental importance is an understanding of the acidic properties of carbon dioxide. The extent to which gaseous CO2 dissolves in water and equilibrates is governed by the Henry law constant for CO2. We are all familiar with the carbonation of beverages. The equilibrium is... [Pg.579]

This relationship between and Kb simplifies the tabulation of acid and base dissociation constants. Acid dissociation constants for a variety of weak acids are listed in Appendix 3B. The corresponding values of Kb for their conjugate weak bases are determined using equation 6.14. [Pg.143]

Figure 9.8b shows a titration curve for a mixture consisting of two weak acids HA and HB. Again, there are two equivalence points. In this case, however, the equivalence points do not require the same volume of titrant because the concentration of HA is greater than that for HB. Since HA is the stronger of the two weak acids, it reacts first thus, the pH before the first equivalence point is controlled by the HA/A buffer. Between the two equivalence points the pH reflects the titration of HB and is determined by the HB/B buffer. Finally, after the second equivalence point, the excess strong base titrant is responsible for the pH. [Pg.287]

It has been shown that for most acid-base titrations the inflection point, which corresponds to the greatest slope in the titration curve, very nearly coincides with the equivalence point. The inflection point actually precedes the equivalence point, with the error approaching 0.1% for weak acids or weak bases with dissociation constants smaller than 10 , or for very dilute solutions. Equivalence points determined in this fashion are indicated on the titration curves in figure 9.8. [Pg.287]

The plT at which an acid-base indicator changes color is determined by its acid dissociation constant. For an indicator that is a monoprotic weak acid, ITIn, the following dissociation reaction occurs... [Pg.288]

Many pharmaceutical compounds are weak acids or bases that can be analyzed by an aqueous or nonaqueous acid-base titration examples include salicylic acid, phenobarbital, caffeine, and sulfanilamide. Amino acids and proteins can be analyzed in glacial acetic acid, using HCIO4 as the titrant. For example, a procedure for determining the amount of nutritionally available protein has been developed that is based on an acid-base titration of lysine residues. ... [Pg.303]

A 0.2521-g sample of an unknown weak acid is titrated with a 0.1005 M solution of NaOH, requiring 42.68 mL to reach the phenolphthalein end point. Determine the compound s equivalent weight. Which of the following compounds is most likely to be the unknown weak acid ... [Pg.309]

Equilibrium Constants Another application of acid-base titrimetry is the determination of equilibrium constants. Consider, for example, the titration of a weak acid, HA, with a strong base. The dissociation constant for the weak acid is... [Pg.310]

When the concentrations of HA and A are equal, equation 9.9 reduces to = [HaO ]) ot pH = pKa. Thus, the piweak acid can be determined by measuring the pH for a solution in which half of the weak acid has been neutralized. On a titration curve, the point of half-neutralization is approximated by the volume of titrant that is half of that needed to reach the equivalence point. As shown in Figure 9.20, an estimate of the weak acid s piQ can be obtained directly from the titration curve. [Pg.310]

A second approach for determining the piQ of an acid is to replot the titration curve in a linear form as a Gran plot. For example, earlier we learned that the titration of a weak acid with a strong base can be plotted in a linear form using the following equation... [Pg.311]

This short paper describes a modification to the traditional Gran plot for determining the concentration of a weak acid in the presence of a strong acid. [Pg.358]

Partanen, J. I. Karki, M. H. Determination of the Thermodynamic Dissociation Constant of a Weak Acid by Potentiometric Acid-Base Titration, /. Chem. Educ. 1994,... [Pg.359]

Directions are provided in this experiment for determining the dissociation constant for a weak acid. Potentiometric titration data are analyzed by a modified Gran plot. The experiment is carried out at a variety of ionic strengths and the thermodynamic dissociation constant determined by extrapolating to zero ionic strength. [Pg.359]

Potentiometric titration curves are used to determine the molecular weight and fQ or for weak acid or weak base analytes. The analysis is accomplished using a nonlinear least squares fit to the potentiometric curve. The appropriate master equation can be provided, or its derivation can be left as a challenge. [Pg.359]

Tartaric acid, H2C4H4O6, is a diprotic weak acid with a pK i of 3.0 and a pK 2 of 4.4. Suppose you have a sample of impure tartaric acid (%purity > 80) and that you plan to determine its purity by titrating with a solution of 0.1 M NaOH using a visual indicator to signal the end point. Describe how you would carry out the analysis, paying particular attention to how much sample you would use, the desired pH range over which you would like the visual indicator to operate, and how you would calculate the %w/w tartaric acid. [Pg.360]

Schwartz has published some hypothetical data for the titration of a 1.02 X ICr" M solution of a monoprotic weak acid (pXa = 8.16) with 1.004 X ICr M NaOH. " A 50-mL pipet is used to transfer a portion of the weak acid solution to the titration vessel. Calibration of the pipet, however, shows that it delivers a volume of only 49.94 ml. Prepare normal, first-derivative, second-derivative, and Gran plot titration curves for these data, and determine the equivalence point for each. How do these equivalence points compare with the expected equivalence point Comment on the utility of each titration curve for the analysis of very dilute solutions of very weak acids. [Pg.361]

The acidity of a water sample is determined by titrating to fixed end points of 3.7 and 8.3, with the former providing a measure of the concentration of strong acid, and the latter a measure of the combined concentrations of strong acid and weak acid. Sketch a titration curve for a mixture of 0.10 M HCl and 0.10 M H2CO3 with 0.20 M strong base, and use it to justify the choice of these end points. [Pg.362]

A 250.0-mg sample of an organic weak acid was dissolved in an appropriate solvent and titrated with 0.0556 M NaOH, requiring 32.58 ml to reach the end point. Determine the compound s equivalent weight. [Pg.363]

Using its titration curve, determine the acid dissociation constant for the weak acid in problem 6. [Pg.363]

The acidity constant for an organic weak acid was determined by measuring its absorbance as a function of pH while maintaining a constant total concentration of the acid. Using the data in the following table, determine the acidity constant for the organic weak acid. [Pg.455]

Kinetic mles of oxidation of MDASA and TPASA by periodate ions in the weak-acidic medium at the presence of mthenium (VI), iridium (IV), rhodium (III) and their mixtures are investigated by spectrophotometric method. The influence of high temperature treatment with mineral acids of catalysts, concentration of reactants, interfering ions, temperature and ionic strength of solutions on the rate of reactions was investigated. Optimal conditions of indicator reactions, rate constants and energy of activation for arylamine oxidation reactions at the presence of individual catalysts are determined. [Pg.37]

The concentration of acid impurities is an important indication of the quality of petroleum products and the purity of organic solvents, plasticizers, mineral oils, food fats, and polymers. Methods are used to detect organic acids in such compounds have many disadvantages the alkalimetry - low sensitivity, especially in the determination of weak acids, the extraction-photometric method is laborious, instmmental methods are expensive. In addition, most of methods are commonly unsuitable for direct analysis. [Pg.180]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]


See other pages where Weak acids determination is mentioned: [Pg.1244]    [Pg.2]    [Pg.18]    [Pg.339]    [Pg.276]    [Pg.19]    [Pg.1244]    [Pg.2]    [Pg.18]    [Pg.339]    [Pg.276]    [Pg.19]    [Pg.69]    [Pg.87]    [Pg.88]    [Pg.89]    [Pg.937]    [Pg.283]    [Pg.284]    [Pg.284]    [Pg.288]    [Pg.297]    [Pg.302]    [Pg.303]    [Pg.362]    [Pg.464]    [Pg.26]    [Pg.260]    [Pg.421]   
See also in sourсe #XX -- [ Pg.378 ]




SEARCH



Acidity, determination

Acidity, determining

Weak acids

Weakly acidic

© 2024 chempedia.info