Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water hydrogen solubility

Solubility in Water Alkyl halides and alcohols differ markedly from one another m their solubility m water All alkyl halides are insoluble m water but low molecular weight alcohols (methyl ethyl n propyl and isopropyl) are soluble m water m all pro portions Their ability to participate m mtermolecular hydrogen bonding not only affects the boiling points of alcohols but also enhances their water solubility Hydrogen bonded networks of the type shown m Figure 4 5m which alcohol and water molecules asso ciate with one another replace the alcohol-alcohol and water-water hydrogen bonded networks present m the pure substances... [Pg.150]

In aqueous solution intermolecular association between carboxylic acid molecules IS replaced by hydrogen bonding to water The solubility properties of carboxylic acids are similar to those of alcohols Carboxylic acids of four carbon atoms or fewer are mis cible with water m all proportions... [Pg.795]

Hydrogen Chloride—Water System. Hydrogen chloride is highly soluble in water and this aqueous solution does not obey Henry s law at ah concentrations. Solubhity data are summarized in Table 5. The relationship between the pressure and vapor composition of unsaturated aqueous hydrochloric acid solutions is given in Reference 12. The vapor—Hquid equiHbria for the water—hydrogen chloride system at pressures up to 1632 kPa and at temperatures ranging from —10 to +70° C are documented in Reference 13. [Pg.439]

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

Monflier et al. (1997) have suggested Pd catalysed hydrocarboxylation of higher alpha olefins in which chemically modified P-cyclodextrin (especially dimethyl P-cyclodextrin) is u.sed in water in preference to a co-solvent like methanol, acetone, acetic acid, acetonitrile, etc. Here, quantitative recycling of the aqueous phase is possible due to easy phase separation without emulsions. A similar strategy has been adopted by Monflier et al. (1998) for biphasic hydrogenations for water-in.soluble aldehydes like undecenal using a water-soluble Ru/triphenylphosphine trisulphonate complex with a. suitably modified p-cyclodextrin. [Pg.143]

Metal ions in aqueous solution exist as complexes with water. The solubility of organic compounds in water depends primarily on their polarity and their ability to form hydrogen bonds with water. Organic compounds with a large part of polar components such as acetic acid, dissolve in water without limit. In such cases, the polar part dominates. By contrast, soaps and detergents have a polar end attached to a relatively large nonpolar part of the molecule. They have limited solubility and the molecules tend to coalesce to form micelles. [Pg.25]

Two of the worst outliers were N,N-dimethylformamide and N,N-dimethyl-acetamide. For both of these, solubility in water was greatly underestimated. This may illustrate a situation in which conformation does assume importance. In the gas phase structures used to compute the surface properties, the nitrogens are planar. There is reason to believe, however, that interaction with water molecules will cause the nitrogens to become pyramidal,48 since that produces more localized lone pairs that better attract water hydrogens. Thus, analysis involving planar nitrogens would not indicate the true strength of the interaction. [Pg.31]

Hydrogen + water. Battino (4) selected 69 solu-bility values from nine papers that reported measurements between temperatures of 273 and 348 K. The mole fraction solubilities at one atmosphere partial pressure of hydrogen at the higher temperatures were estimated from the data of Wiebe and Gaddy (11), Pray, Schweichert, and Minnich (12 ), and Stephan, Hatfield, Peoples and Pray (1 ). The data from Pray, Schweichert and Minnich were combined with Battino s selected data in a linear regression to obtain the tentative four constant equation for the hydrogen solubility in water between 350 and 600 K (Figure 7 and Table V). [Pg.527]

Solubility in water The capacity of alcohols for hydrogen bonding makes them extremely soluble in water. Methanol and ethanol are miscible (infinitely soluble) with water. The solubility of an alcohol decreases as the number of carbon atoms increases. [Pg.27]

In addition to the outstanding achievements in connection with the RCH-RP process other breakthroughs of aqueous organometallic catalysis deserve mentioning, too. The first attempts of enantioselective hydrogenation in water with soluble catalysts were described already in 1978 and today there are several examples of almost complete... [Pg.12]

Simple aliphatic carboxylic acids having upto four carbon atoms are miscible in water due to the formation of hydrogen bonds with water. The solubility decreases with increasing number of carbon atoms. Higher carboxylic acids are practically insoluble in water due to the increased hydrophobic interaction of hydrocarbon part. Benzoic acid, the simplest aromatic carboxylic acid is nearly insoluble in cold water. Carboxylic acids are also soluble in less polar organic solvents like benzene, ether, alcohol, chloroform, etc. [Pg.102]

The solubility of molecules can be explained on the basis of the polarity of molecules. Polar, e.g. water, and nonpolar, e.g. benzene, solvents do not mix. In general, like dissolves like i.e., materials with similar polarity are soluble in each other. A polar solvent, e.g. water, has partial charges that can interact with the partial charges on a polar compound, e.g. sodium chloride (NaCl). As nonpolar compounds have no net charge, polar solvents are not attracted to them. Alkanes are nonpolar molecules, and are insoluble in polar solvent, e.g. water, and soluble in nonpolar solvent, e.g. petroleum ether. The hydrogen bonding and other nonbonding interactions between molecules are described in Chapter 2. [Pg.5]

Solubility in water.—The solubility of hydrogen chloride in water at different temp, and press, has been investigated by H. E. Roscoe and W. Dittmar,1 who found results which may be expressed in several different ways (press. 760 mm.). Let C denote the volumes of gas in c.c. per 100 c.c. of water Cx grms. of HC1 per 100 grms. of water and C2 grms. of HC1 per 100 grms. of soln. [Pg.182]

White, or grayish-white powder, insoluble in water, but soluble in cold hydrochloric acid with the formation of hydrogen peroxide. The preparation should contain at least 82 per cent of Balk. [Pg.69]


See other pages where Water hydrogen solubility is mentioned: [Pg.21]    [Pg.123]    [Pg.236]    [Pg.698]    [Pg.163]    [Pg.61]    [Pg.115]    [Pg.264]    [Pg.19]    [Pg.20]    [Pg.289]    [Pg.290]    [Pg.162]    [Pg.163]    [Pg.79]    [Pg.107]    [Pg.134]    [Pg.104]    [Pg.86]    [Pg.587]    [Pg.238]    [Pg.433]    [Pg.74]    [Pg.208]    [Pg.489]    [Pg.6]    [Pg.130]    [Pg.1007]    [Pg.7]    [Pg.237]    [Pg.445]    [Pg.163]    [Pg.278]   
See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Hydrogen + water

Hydrogen, solubility

Water hydrogenation

© 2024 chempedia.info