Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water condensation reactions

Hydrolysis reaction is followed by alcohol or water condensation reactions and under typical conditions condensation commences before complete hydrolysis of the alkoxidc. [Pg.42]

Nitric acid is prepared in the laboratory by distilling equal weights of potassium nitrate and concentrated sulphuric acid using an air condenser, the stem of which dips into a flask cooled by tap water. The reaction is ... [Pg.238]

Place 2 1 ml. (measured from a micro-burette) of nitro-benzene and 5 g. of granulated tin in a 150 ml. round-bottomed flask fitted with a small reflux water-condenser. (A large flask is employed because the mixture when subsequently boiled may bump violently.) Pour 10 ml. of cone. HCl down the condenser on this scale the reaction is not sufficiently vigorous to get out of control. Heat over a gauze for 15 minutes. Cool the flask and add a solution of 7 5 8- of NaOH in 10 ml. of water to redissolve the initial precipitate. Add about... [Pg.164]

Now add the diazonium solution to the potassium cupro-cyanide in small quantities at a time so that the temperature of the mixture remains between 60° and 70° shake the mixture vigorously after each addition of the diazo solution. Then fit a reflux air- or water-condenser to the flask, and heat the latter on a boiling water-bath for 15 minutes to complete the reaction. Finally steam-distil the solution until no more oily benzonitrile passes over (usually until about 600 ml. of distillate have been collected). [Pg.192]

Place 30 ml. of ethanol in a 200 ml. conical flask fitted to a reflux water-condenser, and then add 1-4 g. of sodium cut into small pieces. The sodium rapidly dissolves to give a solution of sodium ethoxide, the ethanol boiling under the heat of the reaction. When the sodium has completely dissolved, detach the flask and cool it in ice-water. [Pg.276]

Fit a 50 ml. round-bottomed flask to a reflux water-condenser fitted with a calcium chloride tube. Dissolve 1-05 ml. of dry bromobenzene in 5 ml. of dry ether and add this solution to 0-25 g. of magnesium contained in the round-bottomed flask. Now add a crystal of iodine so that it rests on the magnesium. Warm if necessary to start the reaction if the latter becomes too vigorous immerse the flask in cold... [Pg.285]

A 1500 ml. flask is fitted (preferably by means of a three-necked adaptor) with a rubber-sleeved or mercury-sealed stirrer (Fig. 20, p. 39), a reflux water-condenser, and a dropping-funnel cf. Fig. 23(c), p. 45, in which only a two-necked adaptor is shown or Fig. 23(G)). The dried zinc powder (20 g.) is placed in the flask, and a solution of 28 ml. of ethyl bromoacetate and 32 ml. of benzaldehyde in 40 ml. of dry benzene containing 5 ml. of dry ether is placed in the dropping-funnel. Approximately 10 ml. of this solution is run on to the zinc powder, and the mixture allowed to remain unstirred until (usually within a few minutes) a vigorous reaction occurs. (If no reaction occurs, warm the mixture on the water-bath until the reaction starts.) The stirrer is now started, and the rest of the solution allowed to run in drop-wise over a period of about 30 minutes so that the initial reaction is steadily maintained. The flask is then heated on a water-bath for 30 minutes with continuous stirring, and is then cooled in an ice-water bath. The well-stirred product is then hydrolysed by the addition of 120 ml. of 10% sulphuric acid. The mixture is transferred to a separating-funnel, the lower aqueous layer discarded, and the upper benzene layer then... [Pg.287]

The reaction is carried out in a 2-litre long-necked round-bottomed flask, to which is fitted an efficient reflux water-condenser, capable of condensing a sudden rush of vapour without choking. For this purpose, a long bulb-condenser, similar to that shown in Fig. 3(A) (p. 9) is best, but the inner tube must be of wide bore (at least 12 mm.). Alternatively, an air-condenser of wide bore may be used, an.d a short double-surface water-condenser fitted to its top. A steam-distillation fitting for the flask should also be prepared in advance, so that the crude product can subsequently be steam-distilled directly from the flask. The glj cerol used in the preparation must be anhydrous, and should therefore be dehydrated by the method described on p. 113. [Pg.298]

The reaction is best carried out in the apparatus used in the preparation of quinoline, a 1500 ml. flask being fitted with a wide-bore air-condenser carrying in turn a water-condenser a still-head to fit the flask for subsequent steam-distillation should be assembled in advance. [Pg.301]

When the reaction has subsided, boil the reaction-mixture under reflux for 2 hours then make it alkaline with sodium hydroxide solution, and distil it in steam until oily drops no longer come over in the aqueous distillate (1 2 litres). Extract the distillate thoroughly with ether ca. 150 ml.), and dry the ethereal extract over powdered sodium hydroxide. Filter the dry extract through a fluted filter-paper moistened with ether into a 200 ml. flask. Fit the flask with a distillation-head, or a knee-tube , and distil off the ether. Now replace the distillation-head by a reflux water-condenser, add 10 ml. of acetic anhydride, and boil the mixture under reflux for 10 15 minutes. [Pg.301]

Place 38 ml. of isopropanol in a two-necked 500 ml. round-bottomed flask fitted with (a) a reflux water-condenser having a calcium chloride tube at the top, and (b) a dropping-funnel. Cool the flask in ice-water and then run 13 5 ml. of phosphorus trichloride in from the dropping-funnel during 15 minutes. Then allow the reaction-mixture to attain room temperature. Now replace the condenser and the... [Pg.310]

Oxidation, (i) Dissolve 5 g. of potassium dichromate in 20 ml. of dil. H2SO4 in a 100 ml. bolt-head flask. Cool and add 1 ml. of methanol. Fit the flask with a reflux water-condenser and warm gently a vigorous reaction soon occurs and the solution turns green. The characteristic pungent odour of formaldehyde is usually detected at this stage. Continue to heat for 3 minutes and then fit the flask with a knee-tube (Fig. 59, p. 100) and distil off a few ml. Test the distillate with blue litmus-paper to show that it is definitely acid. Then apply Test 3 p. 350) for formic acid. (The reflux-distillation apparatus (Fig. 38, p. 63) can conveniently be used for this test.)... [Pg.335]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Transfer 30 g. of the hydrochloride to a 500 ml. separatory funnel, add 100 ml. of water and shake until a thin paste of uniform consistency is obtained add 10 per cent, aqueous sodium hydroxide solution in the cold with shaking until the whole mass has become bright green (the colour of the free base) and the mixture has an alkaUne reaction. Extract the free base by shaking with two 60 ml. portions of benzene (1). Dry the combined benzene extracts with a Uttle anhydrous potassium carbonate, and filter into a distiUing flask fitted with a water condenser. Distil off about half of the benzene, and pour the residual hot benzene solution into a beaker. Upon cooUng, the p-nitrosodimethylaniUne erystallises in deep green leaflets. Filter these off and dry them in the air. The yield of p-nitrosodimethylaniUne, m.p. 85°, from the hydrochloride is almost quantitative. [Pg.574]

It is sometimes necessary to remove the products of a reaction in a flask (Fig. XII, 1, 1, a) by distillation. The still head depicted in Fig. XII, 2, 5 may be used for this purpose the side arm may be fitted with a water condenser, if required. [Pg.1103]

Into the reaction flask is added 912g crystalline guaiacol and 1500g regular 48% HBr which is then slowly heated to reflux. The tepid water condenser is there to allow the bro-momethane that is formed to leave the reaction flask but is still cold enough to keep the other reactants in the reaction flask. The noxious bro-moethane condenses in the cold water condenser and drips into the chilled methanol in the collection flask. This will keep this bromoethane trapped so that the chemist will not die... [Pg.209]

Condensation reaction (Section 15 7) Reaction m which two molecules combine to give a product accompanied by the expulsion of some small stable molecule (such as water) An example is acid catalyzed ether formation... [Pg.1279]

One type of polymerization reaction is the addition reaction in which successive repeat units add on to the chain. No other product molecules are formed, so the weight of the monomer and that of the repeat unit are identical in this case. A second category of polymerization reaction is the condensation reaction, in which one or two small molecules like water or HCl are eliminated for each chain linkage formed. In this case the molecular weight of the monomer and the... [Pg.3]

The cyanoacryhc esters are prepared via the Knoevenagel condensation reaction (5), in which the corresponding alkyl cyanoacetate reacts with formaldehyde in the presence of a basic catalyst to form a low molecular weight polymer. The polymer slurry is acidified and the water is removed. Subsequendy, the polymer is cracked and redistilled at a high temperature onto a suitable stabilizer combination to prevent premature repolymerization. Strong protonic or Lewis acids are normally used in combination with small amounts of a free-radical stabilizer. [Pg.178]


See other pages where Water condensation reactions is mentioned: [Pg.71]    [Pg.70]    [Pg.361]    [Pg.222]    [Pg.54]    [Pg.71]    [Pg.70]    [Pg.361]    [Pg.222]    [Pg.54]    [Pg.108]    [Pg.78]    [Pg.90]    [Pg.116]    [Pg.132]    [Pg.141]    [Pg.162]    [Pg.203]    [Pg.223]    [Pg.225]    [Pg.237]    [Pg.240]    [Pg.242]    [Pg.255]    [Pg.256]    [Pg.289]    [Pg.497]    [Pg.140]    [Pg.237]    [Pg.415]    [Pg.730]    [Pg.791]    [Pg.844]    [Pg.883]    [Pg.1112]    [Pg.693]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Water condensation

Water-condensers

© 2024 chempedia.info