Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Warm Removal

Log P octanol/water is estimated, t TLV as H2O2 90%. Flush contaminated clothing with water (fire hazard). If container becomes warm, remove to safe place and drain, flush away with water. Lung edema symptoms usually develop several hours later and are aggravated by physical exertion rest and hospitalization essential. As first aid. a doctor or authorized person should consider administering a corticosteroid spray. Packaging special material, non-airtight with safety vent. [Pg.483]

The gas is washed with water to remove any hydrogen chloride. Since iron(II) sulphide is a non-stoichiometric compound and always contains some free iron, the hydrogen sulphide always contains some hydrogen, liberated by the action of the iron on the acid. A sample of hydrogen sulphide of better purity can be obtained if antimony(III) sulphide, (stibnite) SbjSj, is warmed with concentrated hydrochloric acid ... [Pg.282]

Dissolve 12 g. of aniline hydrochloride and 6 g. of urea in 50 ml. of warm water, and then filter the solution through a fluted filter to remove any suspended impurities which may have been introduced with the aniline hydrochloride. Transfer the clear filtrate to a 200 ml. conical flask, fit the latter with a reflux water-condenser, and boil the solution gently over a gauze for about hours. Crystals of diphenylurea usually start to separate after about 30-40 minutes boiling. Occasionally however, the solution becomes supersaturated with the diphenylurea and therefore remains clear in this case, if the solution is vigorously shaken after about 40 minutes heating, a sudden separation of the crystalline diphenyl compound will usually occur. The further deposition of the crystals during the re-... [Pg.125]

Prepare two solutions, one containing i g. of diphenylamine in 8 ml. of warm ethanol, and the other containing 0-5 g. of sodium nitrite in i ml. of water, and cool each solution in ice-water until the temperature falls to 5°. Now add o 8 ml. of concentrated hydrochloric acid steadily with stirring to the diphenylamine solution, and then without delay (otherwise diphenylamine hydrochloride may crystallise out) pour the sodium nitrite solution rapidly into the weil-stirred mixture. The temperature rises at once and the diphenylnitrosoamine rapidly crystallises out. Allow the mixture to stand in the ice-water tor 15 minutes, and then filter off the crystals at the pump, drain thoroughly, wash with water to remove sodium chloride, and then drain again. Recrystallise from methylated spirit. Diphenylnitrosoamine is thus obtained as very pale yellow crystals, m.p. 67 68° yield, 0 9-1 o g. [Pg.204]

Beckmann Rearrangement. Prepare the 85% sulphuric acid by adding 50 ml. of the concentrated acid cautiously to 10 ml. of water, stirring the mixture meanwhile, and then cool the diluted acid in ice-water. Place 16 ml. of the cold acid in a 500 ml. beaker, add 8 g, of the pure oxime, and warm the mixture cautiously until effervescence begins, and then at once remove the heat. A vigorous reaction occurs, and is soon complete. Repeat this operation with another 8 g. of the oxime in a second beaker the reaction is too vigorous to be carried out with larger quantities. [Pg.228]

Gently warm a mixture of 32 g. (32 ml.) of ethyl acetoacetate and 10 g. of aldehyde-ammonia in a 400 ml. beaker by direct heating on a gauze, stirring the mixture carefully with a thermometer. As soon as the reaction starts, remove the heating, and replace it when the reaction slackens, but do not allow the temperature of the mixture to exceed 100-no the reaction is rapidly completed. Add to the mixture about twice its volume of 2A -hydrochloric acid, and stir the mass until the deposit either becomes solid or forms a thick paste, according to the quality of the aldehyde-ammonia employed. Decant the aqueous acid layer, repeat the extraction of the deposit with more acid, and again decant the acid, or filter off the deposit if it is solid. Transfer the deposit to a conical flask and recrystallise it twice from ethanol (or methylated spirit) diluted with an equal volume of water. The i,4-dihydro-collidine-3,5-dicarboxylic diethyl ester (I) is obtained as colourless crystals, m.p. 130-131°. Yield 12 5 g,... [Pg.296]

It is best now to proceed as in the Skraup Synthesis (p. 297) and warm the mixture over an asbestos-covered gauze with a Bunsen flame until the reaction starts, and have at hand a duster soaked in cold water so that when the reaction starts, the heating can be at once removed and the duster wrapped round the shoulders of the flask to aid condensation. [Pg.301]

Ester formation. Add carefully 1 ml. of the liquid to i ml. of ethanol and then warm gently for i minute. Pour into water, make alkaline with aqueous Na2C03 solution (to remove HCl and other acid fumes), and note the odour of ethyl acetate or ethyl benzoate. [Pg.365]

Excellent results are obtained with warm 15 per cent, trisodium phosphate solution to which a little abrasive powder, such as pumice, has been added. This reagent is not suitable for the removal of tars. [Pg.53]

Oleum is marketed in all strengths up to ca. 70 per cent. SO3. From 0 to 40 per cent, free SO3, it is a liquid from 40 to 60 per cent, free SO3, it is a solid from 60 to 70 per cent, free SO3, it is liquid above 70 per cent, free SO3, it is a solid. The acid must be kept in ground glass stoppered, thick-walled bottles. If it is required to melt the acid, the stopper is removed, a watch glass placed on the mouth of the bottle, and the bottle placed in a layer of sand in an air bath which is warmed with a small flame. The bottle is fitted with a wash bottle attachment, and any desired quantity of acid is forced out by gentle air pressure from a hand or foot bellows (the mouth must not be used) this procedure is far more satisfactory than that of pouring the liquid acid from the bottle. [Pg.188]

Cuprous bromide. The solid salt may be prepared by dissolving 150 g. of copper sulphate crystals and 87 5 g. of sodium bromide dihydrate in 500 ml. of warm water, and then adding 38 g. of powdered sodium sulphite over a period of 5-10 minutes to the stirred solution. If the blue colour is not completely discharged, a little more sodium sulphite should be added. The mixture is then cooled, the precipitate is collected in a Buchner funnel, washed twice with water containing a little dissolved sulphurous acid, pressed with a glass stopper to remove most of the liquid, and then dried in an evaporating dish or in an air oven at 100 120°. The yield is about 80 g. [Pg.191]


See other pages where Warm Removal is mentioned: [Pg.80]    [Pg.112]    [Pg.482]    [Pg.195]    [Pg.399]    [Pg.681]    [Pg.195]    [Pg.47]    [Pg.663]    [Pg.670]    [Pg.112]    [Pg.80]    [Pg.112]    [Pg.482]    [Pg.195]    [Pg.399]    [Pg.681]    [Pg.195]    [Pg.47]    [Pg.663]    [Pg.670]    [Pg.112]    [Pg.146]    [Pg.90]    [Pg.112]    [Pg.113]    [Pg.119]    [Pg.133]    [Pg.221]    [Pg.249]    [Pg.253]    [Pg.299]    [Pg.313]    [Pg.368]    [Pg.421]    [Pg.434]    [Pg.468]    [Pg.485]    [Pg.513]    [Pg.80]    [Pg.111]    [Pg.169]    [Pg.183]    [Pg.186]    [Pg.194]    [Pg.197]    [Pg.198]    [Pg.236]    [Pg.237]   


SEARCH



Warming

Warmness

© 2024 chempedia.info