Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volume, Cell maximum sample

Extra-column dispersion can arise in the sample valve, unions, frits, connecting tubing, and the sensor cell of the detector. The maximum sample volume, i.e., that volume that contributes less than 10% to the column variance, is determined by the type of column, dimensions of the column and the chromatographic characteristics of the solute. In practice, the majority of the permitted extra-column dispersion should... [Pg.311]

For maximum accuracy the calibrated volumes and the manifold should be maintained at constant temperature by using a water or constant-temperature air jacket. The liquid-nitrogen level should be maintained as near constant as possible to prevent any variation in the effective volume of the sample cell. [Pg.152]

By assuming that a proportional increase in the amount of sample injected results in a proportional increase in the detector response for the solute band of interest, the detector response for chromatogram I in Figure 7 will increase 14 times when the maximum sample volume of 7 /xL is injected. However, for the 4.6-mm i.d. column, the detector response will increase 400 times when the maximum sample volume of 200 (lL is injected. By taking into account the relative detector responses for the 0.5-/xL injection, at the maximum sample injection volumes, the 4.6-mm i.d. column with the 20-/liL detector flow cell will produce approximately five times the detector response of the 1-mm i.d. column with the 5-/zL flow cell. In most cases, studies can be designed to provide excess sample because aqueous environmental samples are seldom limited with respect to volume. [Pg.123]

Small particle size resins provide higher resolution, as demonstrated in Fig. 4.41. Low molecular weight polystyrene standards are better separated on a GIOOOHxl column packed with 5 /u,m resin than a GlOOOHg column packed with 10 /Ltm resin when compared in the same analysis time. Therefore, smaller particle size resins generally attain a better required resolution in a shorter time. In this context, SuperH columns are best, and Hhr and Hxl columns are second best. Most analyses have been carried out on these three series of H type columns. However, the performance of columns packed with smaller particle size resins is susceptible to some experimental conditions such as the sample concentration of solution, injection volume, and detector cell volume. They must be kept as low as possible to obtain the maximum resolution. Chain scissions of polymer molecules are also easier to occur in columns packed with smaller particle size resins. The flow rate should be kept low in order to prevent this problem, particularly in the analyses of high molecular weight polymers. [Pg.143]

Consideration should be given to the flow rate of the sample through the detection cell. Shultz and co-workers have demonstrated the wide variability in reaction kinetics between ECL reactions, and hence the influence of flow rate on ECL intensity [60], For example, the rate constants (k) of the Ru(bpy)32+ ECL reactions of oxalate, tripropylamine, and proline were calculated to be 1.482, 0.071, and 0.011/s, respectively. Maximum ECL emission was obtained at low linear velocities for slow reactions ranging up to high linear velocities for fast reactions. That is, the flow rate and flow cell volume should be optimized such that the light-emitting species produced is still resident within the flow cell, in view of the light detector, when emission occurs. [Pg.234]

Kinetics. The reaction of N-dodecyl 3-carbamoyl pyridinium bromide (I) with cyanide ion in the microemulsions was observed by following the 340 nm absorption maximum of the 4-cyano adduct (II). See equation (1). Following the work of Bunton, Romsted and Thamavit in micelles ( ), a 5/1 mole ratio of KCN to NaOH was employed to prevent cyanide hydrolysis. The pH of each reaction mixture was measured on a Coleman 38A Extended Range pH meter to insure that the system was sufficiently basic to allow essentially complete ionization of the cyanide. The appropriate amounts of cyanide and hydroxide were added to the mlcroemulslon sample within 10 minutes of running a reaction. Cyanide concentration varied between 0.02 and 0.08 M with respect to the water content. Substrate was Injected via a Unimetrics model 1050 syringe directly into a known volume of the yE-nucleophlle mixture in a 1.0 cm UV quartz cell. Absorbance at 340 nm was followed as a function of time on a Perkln-Elmer model 320 spectrophotometer at 25.0 + 0.3 C. Since the Initial bulk concentration of substrate was 10 M, cvanide was always present in considerable excess. [Pg.177]

The same example problem as used in 7.6 will be used. A reactor of volume 3.5 m3 has a design pressure of 14 barg (maximum accumulated pressure 16.41 bara). A worst case relief scenario has been identified in which a gassy decomposition reaction occurs. The mass of reactants in the reactor would be 2500 kg. An open cell test has been performed in a DIERS bench-scale apparatus, in which the volume of the gas space in the apparatus was 3800 ml, and the mass of the sample was 44.8 g. The peak rate of pressure rise was 2263 N/m2s at a temperature of 246°C, and the corresponding rate of temperature rise was 144°C/minute. These have been corrected for thermal inertia. The pressure in the containment vessel corresponding to the peak rate was 20.2 bara. The liquid density at 246°C is estimated as 820 kg/m3. The gas generated by the runaway has a Cp/Cv value of... [Pg.181]


See other pages where Volume, Cell maximum sample is mentioned: [Pg.353]    [Pg.355]    [Pg.438]    [Pg.98]    [Pg.395]    [Pg.272]    [Pg.76]    [Pg.286]    [Pg.438]    [Pg.73]    [Pg.250]    [Pg.433]    [Pg.159]    [Pg.454]    [Pg.687]    [Pg.126]    [Pg.72]    [Pg.337]    [Pg.270]    [Pg.50]    [Pg.50]    [Pg.53]    [Pg.238]    [Pg.332]    [Pg.117]    [Pg.367]    [Pg.52]    [Pg.123]    [Pg.137]    [Pg.169]    [Pg.114]    [Pg.196]    [Pg.276]    [Pg.923]    [Pg.520]    [Pg.50]    [Pg.50]    [Pg.53]    [Pg.238]    [Pg.332]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Cell volume

Maximum sample volume

Sample volume

Sampling volume

© 2024 chempedia.info