Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscous Pump

Pure pressure flow was first formulated and solved by Joseph Boussinesq in 1868, and combined pressure and drag flow in 1922 by Rowell and Finlayson (19) in the first mathematical model of screw-type viscous pumps. The detailed solution by the method of separation of variables is given elsewhere (17c), and the resulting velocity profile is given by... [Pg.253]

Sharatchandra MC, Sen M, Gad-El-Hak M (1997) Navier-Stokes Simulations of a Novel Viscous Pump. J Fluid Eng 119 372-382... [Pg.2005]

Kilani MI, Galambos PC, Haik YS, Chen CJ (2003) Design and analysis of a surface micromachined spiral-channel viscous pump. J Fluids Eng 125 339... [Pg.3414]

The presence of clays in certain circuits must not be ignored. If clay is not separated, the slurry can be quite viscous. Pumps and pipes must be sized properly to handle the re sultant absolute (or dynamic) viscosity. Certain mines in Peru contain material called soft high clay, which can increase the absolute (or dynamic) viscosity of the slurry up to 400 mPa at weight concentrations in excess of 45%. Dilution to lower concentration and changes to recycling load are solutions to such a problem. [Pg.31]

This property should also be within precise limits. In fact, a too-viscous fuel increases pressure drop in the pump and injectors which then tends to diminish the injection pressure and the degree of atomization as well as affecting the process of combustion. Inversely, insufficient viscosity can cause seizing of the Injection pump. [Pg.214]

The progressive cavity pump consists of a rotating cork-screw like sub-surface assembly which is driven by a surface mounted motor. Beam pump rods are used to connect the two. The flowrate achieved is mainly a function of the rotational speed of the subsurface assembly. There Is in principle very little that can go wrong with progressive cavity pumps. Progressive cavity pumps excel in low productivity shallow wells with viscous crude oils and can also handle significant quantities of produced solids. [Pg.231]

Carry out this preparation precisely as described for the a-compound, but instead of zinc chloride add 2 5 g. of anhydrous powdered sodium acetate (preparation, p. 116) to the acetic anhydride. When this mixture has been heated on the water-bath for 5 minutes, and the greater part of the acetate has dissolved, add the 5 g. of powdered glucose. After heating for I hour, pour into cold water as before. The viscous oil crystallises more readily than that obtained in the preparation of the a-compound. Filter the solid material at the pump, breaking up any lumps as before, wash thoroughly with water and drain. (Yield of crude product, io o-io 5 g.). Recrystallise from rectified spirit until the pure -pentacetylglucose is obtained as colourless crystals, m.p- 130-131° again two recrystallisations are usually sufficient for this purpose. [Pg.142]

The yellow solution was poured into 150 ml of water. After addition of 20 g of ammonium chloride and vigorous shaking, the layers were separated. The aqueous layer was extracted twice with diethyl ether. The combined solutions were dried over magnesium sulfate and concentrated in a water-pump vacuum. The residue was distilled at low pressure giving the desired carbinol, (b.p. 40°C/0.1 mmHg), n 1.5505 in 66-702 yield. A small viscous residue remained in the distillation flask. [Pg.80]

After cooling to about 40°C (note 2) the viscous brown liquid was poured into a vigorously stirred solution of 50 g of ammonium chloride in 250 ml of 4 N HCl, which was kept at 0-5°C. The flask was also rinsed with this solution. The product was extracted 5-7 times with a 1 1 mixture of diethyl ether and pentane. The combined extracts were washed with saturated NHi Cl solution and subsequently dried over magnesium sulfate. The residue remaining after removal of the solvents in a water-pump vacuum, was carefully distilled through a 30-cm Widmer column. The desired nitrile, b.p. 84°C/15 mmHg, n 1.4487, was obtained in 72% yield. The first fraction (about 5 g) consisted mainly of the 1,3-substitution product n-C,HgC(CsN)=C=CH2. [Pg.226]

Several wick stmctures are in common use. First is a fine-pore (0.14—0.25 mm (100-60 mesh) wire spacing) woven screen which is roUed into an annular stmcture consisting of one or more wraps inserted into the heat pipe bore. The mesh wick is a satisfactory compromise, in many cases, between cost and performance. Where high heat transfer in a given diameter is of paramount importance, a fine-pore screen is placed over longitudinal slots in the vessel wall. Such a composite stmcture provides low viscous drag for Hquid flow in the channels and a small pore size in the screen for maximum pumping pressure. [Pg.514]

When the recycle soot in the feedstock is too viscous to be pumped at temperatures below 93°C, the water—carbon slurry is first contacted with naphtha carbon—naphtha agglomerates are removed from the water slurry and mixed with additional naphtha. The resultant carbon—naphtha mixture is combined with the hot gasification feedstock which may be as viscous as deasphalter pitch. The feedstock carbon—naphtha mixture is heated and flashed, and then fed to a naphtha stripper where naphtha is recovered for recycle to the carbon—water separation step. The carbon remains dispersed in the hot feedstock leaving the bottom of the naphtha stripper column and is recycled to the gasification reactor. [Pg.423]

Fiber Slurry Pipelines. Pipelines to carry suspensions of wood, paper, sludge, etc, have found commercial acceptance. Most of them are less than 15 km long but have diameters of up to 500 mm. These slurries are often concentrated and display viscous plastic properties, although particle sizes may vary special pumps are used. One such hydrotransport system carries a cellulose slurry by pipeline from the plant to a paper plant near Heidenau, Germany. The 250-mm dia pipeline carries 60 t/d over the 3-km distance to thickeners. In Sweden, a 3.7-km, 500-mm dia pipeline moves cellulose by... [Pg.48]

Disk Pumps. When pumping shear-sensitive or highly viscous fluids, it is desirable to reduce internal turbulence caused by the vanes. The disk pump design rehes on the centrifugal frictional effect of a vaneless disk. Whereas the efficiency of this pump is lower than that of similar centrifugal pumps having vanes, it is often the only solution to certain pumping appHcations. [Pg.295]


See other pages where Viscous Pump is mentioned: [Pg.239]    [Pg.1188]    [Pg.2169]    [Pg.2169]    [Pg.1009]    [Pg.239]    [Pg.1188]    [Pg.2169]    [Pg.2169]    [Pg.1009]    [Pg.86]    [Pg.146]    [Pg.171]    [Pg.242]    [Pg.141]    [Pg.167]    [Pg.173]    [Pg.211]    [Pg.506]    [Pg.678]    [Pg.986]    [Pg.19]    [Pg.33]    [Pg.34]    [Pg.68]    [Pg.112]    [Pg.228]    [Pg.49]    [Pg.35]    [Pg.495]    [Pg.514]    [Pg.514]    [Pg.147]    [Pg.250]    [Pg.427]    [Pg.137]    [Pg.296]    [Pg.268]    [Pg.291]   
See also in sourсe #XX -- [ Pg.2169 ]




SEARCH



Example 3-16 Pump Performance Correction For Viscous Liquid

Screw pumps, viscous material

© 2024 chempedia.info