Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl pyrolysis

Most of the ethylene dichloride produced is utilized for the manufacture of vinyl chloride, which may be obtained from it by pyrolysis or the action of caustic soda. Large quantities are also used in anti-knock additives for gasoline. As a solvent It has been displaced by trichloroethylene and tetrachloroelhyJene. U.S. production 1978 4-75 megatonnes. [Pg.134]

Vlayl fluoride [75-02-5] (VF) (fluoroethene) is a colorless gas at ambient conditions. It was first prepared by reaction of l,l-difluoro-2-bromoethane [359-07-9] with ziac (1). Most approaches to vinyl fluoride synthesis have employed reactions of acetylene [74-86-2] with hydrogen fluoride (HF) either directly (2—5) or utilizing catalysts (3,6—10). Other routes have iavolved ethylene [74-85-1] and HF (11), pyrolysis of 1,1-difluoroethane [624-72-6] (12,13) and fluorochloroethanes (14—18), reaction of 1,1-difluoroethane with acetylene (19,20), and halogen exchange of vinyl chloride [75-01-4] with HF (21—23). Physical properties of vinyl fluoride are given ia Table 1. [Pg.379]

Ethylene Dichlonde and Vinyl Chloride. In the United States, all ethylene dichloride [107-60-2] (EDC) is produced from ethylene, either by chlorination or oxychlorination (oxyhydrochlorination). The oxychlorination process is particularly attractive to manufacturers having a supply of by-product HCl, such as from pyrolysis of EDC to vinyl chloride [75-01-4] monomer (VCM), because this by-product HCl can be fed back to the oxychlorination reactor. EDC consumption follows demand for VCM which consumed about 87% of EDC production in 1989. VCM is, in turn, used in the manufacture of PVC resins. Essentially all HCl generated during VCM production is recycled to produce precursor EDC (see Chlorocarbons and Cm OROHYDROCARBONS ViNYLPOLYAffiRS). [Pg.450]

Pyrolysis. Vinyl chloride is more stable than saturated chloroalkanes to thermal pyrolysis, which is why nearly all vinyl chloride made commercially comes from thermal dehydrochlorination of EDC. When vinyl chloride is heated to 450°C, only small amounts of acetylene form. Litde conversion of vinyl chloride occurs, even at 525—575°C, and the main products are chloroprene [126-99-8] and acetylene. The presence of HCl lowers the amount of chloroprene formed. [Pg.415]

In a typical balanced plant producing vinyl chloride from EDC, all the HCl produced in EDC pyrolysis is used as the feed for oxychlorination. On this basis, EDC production is about evenly spHt between direct chlorination and oxychlorination, and there is no net production or consumption of HCl. The three principal operating steps used in the balanced process for ethylene-based vinyl chloride production are shown in the block flow diagram in Eigure 1, and a schematic of the overall process for a conventional plant is shown in Eigure 2 (76). A typical material balance for this process is given in Table 2. [Pg.415]

Chlorinated by-products of ethylene oxychlorination typically include 1,1,2-trichloroethane chloral [75-87-6] (trichloroacetaldehyde) trichloroethylene [7901-6]-, 1,1-dichloroethane cis- and /n j -l,2-dichloroethylenes [156-59-2 and 156-60-5]-, 1,1-dichloroethylene [75-35-4] (vinyhdene chloride) 2-chloroethanol [107-07-3]-, ethyl chloride vinyl chloride mono-, di-, tri-, and tetrachloromethanes (methyl chloride [74-87-3], methylene chloride [75-09-2], chloroform, and carbon tetrachloride [56-23-5])-, and higher boiling compounds. The production of these compounds should be minimized to lower raw material costs, lessen the task of EDC purification, prevent fouling in the pyrolysis reactor, and minimize by-product handling and disposal. Of particular concern is chloral, because it polymerizes in the presence of strong acids. Chloral must be removed to prevent the formation of soflds which can foul and clog operating lines and controls (78). [Pg.418]

Ethylene Dichloride Pyrolysis to Vinyl Chloride. Thermal pyrolysis or cracking of EDC to vinyl chloride and HCl occurs as a homogenous, first-order, free-radical chain reaction. The accepted general mechanism involves the four steps shown in equations 10—13 ... [Pg.419]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

Alternatives to oxychlorination have also been proposed as part of a balanced VCM plant. In the past, many vinyl chloride manufacturers used a balanced ethylene—acetylene process for a brief period prior to the commercialization of oxychlorination technology. Addition of HCl to acetylene was used instead of ethylene oxychlorination to consume the HCl made in EDC pyrolysis. Since the 1950s, the relative costs of ethylene and acetylene have made this route economically unattractive. Another alternative is HCl oxidation to chlorine, which can subsequently be used in dkect chlorination (131). The SheU-Deacon (132), Kel-Chlor (133), and MT-Chlor (134) processes, as well as a process recently developed at the University of Southern California (135) are among the available commercial HCl oxidation technologies. Each has had very limited industrial appHcation, perhaps because the equiHbrium reaction is incomplete and the mixture of HCl, O2, CI2, and water presents very challenging separation, purification, and handling requkements. HCl oxidation does not compare favorably with oxychlorination because it also requkes twice the dkect chlorination capacity for a balanced vinyl chloride plant. Consequently, it is doubtful that it will ever displace oxychlorination in the production of vinyl chloride by the balanced ethylene process. [Pg.422]

A/-Vinylamides and /V-vinylimides can be prepared by reaction of amides and imides with acetjiene (3), by dehydration of hydroxyethyl derivatives (4), by pyrolysis of ethyUdenebisamides (5), or by vinyl exchange (6), among other methods the monomers are stable when properly stored. [Pg.522]

Pyrolysis. Pyrolysis of 1,2-dichloroethane in the temperature range of 340—515°C gives vinyl chloride, hydrogen chloride, and traces of acetylene (1,18) and 2-chlorobutadiene. Reaction rate is accelerated by chlorine (19), bromine, bromotrichloromethane, carbon tetrachloride (20), and other free-radical generators. Catalytic dehydrochlorination of 1,2-dichloroethane on activated alumina (3), metal carbonate, and sulfate salts (5) has been reported, and lasers have been used to initiate the cracking reaction, although not at a low enough temperature to show economic benefits. [Pg.7]

Oxetane, 3,3,4,4-tetramethyl-2,2-diphenyl-pyrolysis, 7, 372-373 Oxetane, vinyl-thermal stability, 7, 370 Oxetane-3-carboxylic acid, 3-hydroxy-2,2,4,4-tetramethyl-synthesis, 7, 394... [Pg.733]

After brief discussion of the state-of-the-art of modern Py-GC/MS, some most recent applications for stixictural and compositional chai acterization of polymeric materials are described in detail. These include microstixictural studies on sequence distributions of copolymers, stereoregularity and end group chai acterization for various vinyl-type polymers such as polystyrene and polymethyl methacrylate by use of conventional analytical pyrolysis. [Pg.17]

The monomer is produced from trichloroethane by dehydrochlorination Figure 17.2). This may be effected by pyrolysis at 400°C, by heating with lime or treatment with caustic soda. The trichlorethane itself may be obtained from ethylene, vinyl chloride or acetylene. [Pg.467]

Pentadiene has been prepared by the interaction of allyl bromide and vinyl bromide in the presence of magnesium and by the pyrolysis of 1,5-pentanediol diacetate or 4-penten-l-ol acetate. The present procedure is essentially that of Shoemaker and Boord with some modifications. ... [Pg.64]

The second step is the dehydrochlorination of ethylene dichloride (EDC) to vinyl chloride and HCl. The pyrolysis reaction occurs at approximately 500°C and 25 atmospheres in the presence of pumice on charcoal ... [Pg.202]

Figure 7-5. The European Vinyls Corporation process for producing vinyl chlo-rlde " (1) chlorination section, (2) oxychlorination reactor, (3) steam stripping and caustic treatment of water effluent, (4) EDC distillation, (5) pyrolysis furnace, (6,7,8) VCM and EDC separation, (10) by-product reactor. Figure 7-5. The European Vinyls Corporation process for producing vinyl chlo-rlde " (1) chlorination section, (2) oxychlorination reactor, (3) steam stripping and caustic treatment of water effluent, (4) EDC distillation, (5) pyrolysis furnace, (6,7,8) VCM and EDC separation, (10) by-product reactor.
Because of the high pyrolysis temperature, the C4-fraction contains quantities of vinyl acetylene and ethyl acetylene, the removal of which prior to the recovery of butadiene is necessary in certain cases, particularly if butadiene of low acetylene content is desired. Similar considerations apply to effractions obtained by the dehydrogenation of n-butane and n-butenes. [Pg.74]

Among phosphonate esters (170) used in olefin synthesis were those with R = S-CeHi-Br-/ , S02 C6H4-Br-A CO-NHR, and S CHa CEi-XHa. The allyl vinyl thio-ethers (171) obtained using the last of these gave a-allyl-aldehydes on pyrolysis in the presence of red mercuric oxide. [Pg.180]

In the manufacture of vinyl chloride (VC) by the pyrolysis of dichloroethane (DCE), the reactor conversion is limited to 55 per cent to reduce carbon formation, which fouls the reactor tubes. [Pg.47]


See other pages where Vinyl pyrolysis is mentioned: [Pg.420]    [Pg.276]    [Pg.456]    [Pg.385]    [Pg.379]    [Pg.148]    [Pg.202]    [Pg.413]    [Pg.415]    [Pg.415]    [Pg.418]    [Pg.419]    [Pg.419]    [Pg.482]    [Pg.5]    [Pg.667]    [Pg.314]    [Pg.99]    [Pg.744]    [Pg.824]    [Pg.1645]    [Pg.14]    [Pg.824]    [Pg.722]   
See also in sourсe #XX -- [ Pg.186 , Pg.210 , Pg.211 ]




SEARCH



Pyrolysis vinyl azides

Pyrolysis vinyl chloride monomer process

Vinyl bromide, pyrolysis

Vinyl from pyrolysis

Vinyl halides pyrolysis

Vinyl polymers pyrolysis

© 2024 chempedia.info