Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl monomers polymerization kinetics characteristic

Cationic surfactants, in contrast to anionic surfactants, usually reduce both the number of particles involved in the polymerization and the rate of polymerization. The nature of the stabilizing emulsifier has a marked effect on the polymerization kinetics. For example, addition of a non-ionic stabilizer [e.g., poly(vinyl alcohol), a block copolymer of carbowax 6000 and vinyl acetate, or ethylene oxide-alkyl phenol condensates] to a seed polymer stabilized by an anionic surfactant decreased the rate of polymerization to 25% of the original rate. The effect was as if the nonionic stabilizer (or protective colloid) acted as a barrier around the seed particles to alter the over-all kinetics. It may be that the viscosity of the medium in the neighborhood of the nonionic surfactant coating of the polymer particle is sufficiently different from that of an anionic layer to interfere with the diffusion of monomer or free radicals. There may also be a change in the chain-transfer characteristics of the system [156]. [Pg.257]

As mentioned previously, special attention has been paid to optical polymeric materials obtained by radical copolymerisation of fluorine-containing methacrylates in mixture with various vinyl monomers [3]. Study of kinetics and mechanism of this reaction over a wide range of degrees of reaction remains one of the main problems of chemistry of polymerisational polymers as a whole, and synthesis of copolymers for optical purposes based on alkyl methacrylates, in particular. On the one hand, there is an increased interest in the studies of the mechanism during the initial stages of the radical copolymerisation [65, 66], and on the other hand, the processes occurring in specific comonomeric pairs, for the point of view of those which display the gel-effect and lead to systems with excellent optical characteristics [1,3]. [Pg.226]

New kinetic regularities at polymerization of vinyl monomers in homophase and heterophase conditions in the presence of additives of transition metal salts, azonitriles, peroxides, stable nitroxyl radicals and radical anions (and their complexes), aromatic amines and their derivatives, emulsifiers and solvents of various nature were revealed. The mechanisms of the studied processes have been estabhshed in the whole and as elementary stages, their basic kinetic characteristics have been determined. Equations to describe the behavior of the studied chemical systems in polymerization reactions proceeding in various physicochemical conditions have been derived. Scientific principles of regulating polymer synthesis processes have been elaborated, which allows optimization of some industrial technologies and solving most important problems of environment protection. [Pg.92]

Abstract The in vitro enzyme-mediated polymerization of vinyl monomers is reviewed with a scope covering enzymatic polymerization of vitamin C functionalized vinyl monomers, styrene, derivatives of styrene, acrylates, and acrylamide in water and water-miscible cosolvents. Vitamin C functionalized polymers were synthesized via a two-step biocatalytic approach where vitamin C was first regioselectively coupled to vinyl monomers and then subsequently polymerized. The analysis of this enzymatic cascade approach to functionalized vinyl polymers showed that the vitamin C in polymeric form retained its antioxidant property. Kinetic and mechanistic studies revealed that a ternary system (horseradish peroxidase, H2O2, initiator fS-diketone) was required for efficient polymerization and that the initiator controls the characteristics of the polymer. The main attributes of enzymatic approaches to vinyl polymerization when compared with more traditional synthetic approaches include facile ambient reaction environments of temperature and pressure, aqueous conditions, and direct control of selectivity to generate functionalized materials as described for the ascorbic acid modified polymers. [Pg.211]

Kinetics of Homopolymerization 4.1. The Elementary Reaction Steps The free radical polymerization of ethylene displays most of the typical characteristics of a vinyl polymerization 30). Although it does not appear to be necessary to postulate reaction steps whidh are not well estabh shed in free-radical chemistry, several reactions which are of importance in ethylene synthesis seem to be of limited, if any, significance in the polymerization of a typical vinyl monomer, such as styrene, carried out under normal conditions. [Pg.398]

Dispersion polymerization involves an initially homogeneous system of monomer, organic solvent, initiator, and particle stabilizer (usually uncharged polymers such as poly(A-vinyl-pyrrolidinone) and hydroxypropyl cellulose). The system becomes heterogeneous on polymerization because the polymer is insoluble in the solvent. Polymer particles are stabilized by adsorption of the particle stabilizer [Yasuda et al., 2001], Polymerization proceeds in the polymer particles as they absorb monomer from the continuous phase. Dispersion polymerization usually yields polymer particles with sizes in between those obtained by emulsion and suspension polymerizations—about 1-10 pm in diameter. For the larger particle sizes, the reaction characteristics are the same as in suspension polymerization. For the smallest particle sizes, suspension polymerization may exhibit the compartmentalized kinetics of emulsion polymerization. [Pg.298]

Characteristic kinetic and morphological features of vinyl chloride radical polymerization processes were reviewed in89. While developing a mathematical model for the polymerization of this monomer, Canadian90 and Soviet91 investigators concentrated their attention on the heterophase nature of the process. In both cases the dependence of kinetic constants on the viscosity of the medium was disregarded. [Pg.124]

The emulsion copolymerization of vinyl acetate and butyl acrylate has received considerable attention. The butyl acrylate confers improved film forming characteristics to the polymer. The disparities in their water solubilities and of their individual polymerization rates may help to explain the variations in reactivity ratios that have been reported [170,171]. The variation in reactivity ratios may also by related to the following observations The reaction method has an effect on the morphology of the polymer particles. In a batch emulsion process, a butyl acrylate—rich core is formed which is surrounded by a vinyl acetate-rich shell, in a process in which the monomers are fed into the reactor in a semicontinuous manner, particles form with a more uniform distribution of the monomers [172]. The kinetics for a batch process indicates that the initially formed polymer is indeed high in butyl acrylate. As this monomer is used up, eventually a copolymer high in vinyl acetate develops. It is this latter polymer which forms the final shell around the particles. [Pg.267]

The Smith-Ewart kinetic theory of emulsion polymerization is simple and provides a rational and accurate description of the polymerization process for monomers such as styrene, butadiene, and isoprene, which have very limited solubility in water (less than 0.1%). However, there are a number of exceptions. For example, as we indicated earlier, large particles (> 0.1 to 0.5 cm diameter) may and can contain more than one growing chain simultaneously for appreciable lengths of time. Some initiation in, followed by polymer precipitation from the aqueous phase may occur for monomers with appreciable water solubility (1 to 10%), such as vinyl chloride. The characteristic dependence of polymerization rate on emulsifier concentration and hence N may be altered quantitatively by the absorption of emulsifier by these particles. Polymerization may actually be taking place near the outer surface of a growing particle due to chain transfer to the emulsifier. [Pg.274]

C. S. Marvel, J. Dec, and H. G. Cooke, Jr. [/ Am. Chem. Soc., 62, 3499 (1940)] employed optical rotation measurements to study the kinetics of polymerization of vinyl-1-phenylbutyrate. In dioxane solution the specific rotation angle represents a linear combination of contributions from the monomer proper and those of the polymerized monomer units. The contribution of the polymerized units can be viewed as independent of chain length. The reaction takes place in a constant-volume system and may be viewed as irreversible. The stoichiometry of the reaction may be viewed as A -I-Pjj Pn+i where A represents the monomer and P the polymer. The following data are characteristic of this reaction. [Pg.67]

The kinetic equivalence of bulk and suspension polymerizations of vinyl chloride has been demonstrated [78]. Thus, the suspension polymerization process may be considered as the polymerization of individual monomer droplets in an inert solvent phase. Naturally, some characteristics peculiar to the suspension process may be superimposed on those of the bulk process. This matter has been nicely summarized by Eliassaf [86, 87]. [Pg.378]


See other pages where Vinyl monomers polymerization kinetics characteristic is mentioned: [Pg.64]    [Pg.215]    [Pg.2]    [Pg.306]    [Pg.86]    [Pg.56]    [Pg.536]    [Pg.215]    [Pg.154]    [Pg.12]    [Pg.466]    [Pg.26]    [Pg.466]    [Pg.315]    [Pg.225]    [Pg.8871]    [Pg.180]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Kinetic characteristics

Monomer vinyl polymerization kinetics

Monomers, polymerization

Polymerization Characteristics

Polymerization kinetics

Polymerization vinylic

Vinyl monome

Vinyl monomer

Vinyl monomers polymerization

Vinyl polymerization

Vinyl polymerization kinetics

Vinylic monomers

© 2024 chempedia.info