Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl ethers chain transfer

Vinyl Ethers. Chain transfer reactions involving suitably constituted vinyl ethers [64,65] also proceeded via addition-fragmentation reactions, as illustrated in Scheme 21. Benzyl and benzoyl groups were thus incorporated into polystyrene and poly(methyl methacrylate). [Pg.226]

In the photopolymerization of methacrylamide by benzoin methyl ether, chain-transfer to monomer has been found to be important, and benzalde-hyde is reported to be an inefficient photoinitiator of methyl methacrylate polymerization unless benzophenone and triethylamine are present. Acetophenone has been found to sensitize the cycloaddition of maleic anhydride to 7-oxabicyclo[2.2.1]heptan-5-one-2,3-dicarboxylic anhydride, , a-hydroxy-acetophenone derivatives have been found to be non-yellowing initiators, and h.p.l.c. has been used to determine residual carbonyl photoinitiators in u.v.-cured resins. In the emulsion-polymerization of methyl methacrylate using an aromatic ketone and a continuous or intermittent laser, the former conditions were found to be similar to those under continuous u.v. irradiation. The dependence of the polymerization rate and average chain-length on the absorbance of the initiator used in the photoinitiated polymerization of vinyl monomers has been studied. Interestingly, irrespective of all conditions, maximum conversion is observed when initiator absorbance is 2.51. "... [Pg.476]

Tetiafluoioethylene—peifluoiopiopyl vinyl ethei copolymeis [26655-00-5] aie made in aqueous (1,2) oi nonaqueous media (3). In aqueous copolymerizations water-soluble initiators and a perfluorinated emulsifying agent are used. Molecular weight and molecular weight distribution are controlled by a chain-transfer agent. Sometimes a second phase is added to the reaction medium to improve the distribution of the vinyl ether in the poljmier (11) a buffer is also added. [Pg.374]

VEs do not readily enter into copolymerization by simple cationic polymerization techniques instead, they can be mixed randomly or in blocks with the aid of living polymerization methods. This is on account of the differences in reactivity, resulting in significant rate differentials. Consequendy, reactivity ratios must be taken into account if random copolymers, instead of mixtures of homopolymers, are to be obtained by standard cationic polymeriza tion (50,51). Table 5 illustrates this situation for butyl vinyl ether (BVE) copolymerized with other VEs. The rate constants of polymerization (kp) can differ by one or two orders of magnitude, resulting in homopolymerization of each monomer or incorporation of the faster monomer, followed by the slower (assuming no chain transfer). [Pg.517]

A polymeric composition for reducing fluid loss in drilling muds and well cement compositions is obtained by the free radical-initiated polymerization of a water-soluble vinyl monomer in an aqueous suspension of lignin, modified lignins, lignite, brown coal, and modified brown coal [705,1847]. The vinyl monomers can be methacrylic acid, methacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, vinylacetate, methyl vinyl ether, ethyl vinyl ether, N-methylmethacrylamide, N,N-dimethylmethacrylamide, vinyl sulfonate, and additional AMPS. In this process a grafting process to the coals by chain transfer may occur. [Pg.46]

At -50°C Mn s remained unchanged (Mn % 3 x 10, [p-DCC]Q = 0.50 mM) with increasing Wjgyg and Mw/Mn % 2.0. The polymerization is no longer quasiliving but follows a conventional chain-transfer-dominated course. Nonpolar media are evidently unsuitable for quasiliving polymerization of isobutyl vinyl ethers. [Pg.220]

Carbon dioxide has also proven to be an exemplary medium for the polymerization of TFE with perfluorinated alkylvinyl ether monomers containing sulfonyl fluoride such as CF2=CF0CF2CF(CF3)0CF2CF2S02F (PSEVPE). As seen in Table 13.2, the dramatic difference in the number of acid end groups between the commercial sample and those made in C02 indicates that chain-transfer processes stemming from vinyl ether radical arrangement are not nearly as prevalent in C02 as in conventional systems. [Pg.199]

During polymerization, a polymeric radical with a perfluoro(alkyl vinyl ether)-derived active center can have one of two fates it can cross-propagate to tetrafluoroethylene or it can undergo P-scission to yield an acid-fluoride-terminated polymer chain and generate a peduoroalkyl radical capable of initiating further polymerization (ie., chain transfer to monomer). These scenarios are illustrated in Scheme 3. [Pg.201]

The propensity of the C5 site towards electrophilic substitution has been exploited to prepare functionalized oligomers by cationic polymerization. Thus monomers like isobutene, s ene, the vinyl ethers, etc. polymerize in the presence of simple furan derivatives such as 2-methyl furan to give essentially short chains (DP between 2 and 100 depending on the specific experimental conditions) with a terminal furan ring as a result of predominant transfer onto the C5 position of the added furan compound (20). [Pg.201]

An example of the first type of study is the cationic pol erization of alkenes and heterocyclic monomers in the presence of 2-alWlfurans. As discussed above, electrophilic substitution at C5 is quite facile with these compounds and one can therefore prepare monofunctional oligomers bearing a furanic end-group. By a judicious choice of experimental conditions this transfer reaction will predominate over all other chain-breaking events and virtually all the chains will have the same terminal structure, i.e. a 5-oligomer-2-al lfuran. Structure 32 illustrates this principle with isobutyl vinyl ether oligomers capped by 2-methylfuran ... [Pg.207]

This reaction may account in part for the oligomers obtained in the polymerization of pro-pene, 1-butene, and other 1-alkenes where the propagation reaction is not highly favorable (due to the low stability of the propagating carbocation). Unreactive 1-alkenes and 2-alkenes have been used to control polymer molecular weight in cationic polymerization of reactive monomers, presumably by hydride transfer to the unreactive monomer. The importance of hydride ion transfer from monomer is not established for the more reactive monomers. For example, hydride transfer by monomer is less likely a mode of chain termination compared to proton transfer to monomer for isobutylene polymerization since the tertiary carbocation formed by proton transfer is more stable than the allyl carbocation formed by hydride transfer. Similar considerations apply to the polymerizations of other reactive monomers. Hydride transfer is not a possibility for those monomers without easily transferable hydrogens, such as A-vinylcarbazole, styrene, vinyl ethers, and coumarone. [Pg.385]


See other pages where Vinyl ethers chain transfer is mentioned: [Pg.245]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.1101]    [Pg.297]    [Pg.298]    [Pg.597]    [Pg.91]    [Pg.46]    [Pg.224]    [Pg.35]    [Pg.117]    [Pg.130]    [Pg.133]    [Pg.197]    [Pg.197]    [Pg.656]    [Pg.664]    [Pg.524]    [Pg.197]    [Pg.197]    [Pg.309]    [Pg.112]    [Pg.127]    [Pg.633]    [Pg.643]    [Pg.143]    [Pg.115]    [Pg.1101]    [Pg.839]    [Pg.840]    [Pg.245]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.1590]   


SEARCH



Vinyl transfer

© 2024 chempedia.info