Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl cations, formation

In addition to information about the identity and reactivity of transient vinyl cations, information is also available about their efficiency of formation309. The quantum yields of vinyl cation formation from compounds 99 as a function of R and X show that the cation... [Pg.901]

Photolysis of 2-bromo-4,4-dimethyl-2-cyclohexenone only affords reduction, even in a nucleophilic medium343,344. Apparently, this substrate is structurally not suitable to form a vinyl cation. Formation of vinyl radical-derived products is also the main process for all vinylic halides, if their irradiation is performed in an apolar medium. Such photochemical reductive dehalogenation and especially dechlorination reactions have been extensively studied in the past, not in the least because of their importance as abiotic transformation of persistent polychlorinated environmental pollutants. Examples are the cyclodiene insecticides aldrin and dieldrin, which contain a vicinal dichloroethene chromophore. In recent... [Pg.902]

Kitamura et al. also concluded that the ease of vinyl cation formation based on the leaving group was Cl > Br > I which corroborates the evidence found on irradiation of the l,l-diphenyl-2-haloethenes [62], but contrasts with the work of Kropp et al. [57-59,61]. Further evidence for a vinyl cation was uncovered in the photolysis of the a-phenyl-/ ,/ -anisyl vinyl bromide which is illustrated in Scheme 23. A pyrroline product via intermediate E was formed in high yield, which reveals a 1,2-cationic anisyl shift [66],... [Pg.81]

Increased sensitivity towards acid is observed when protonation occurs on a functional group outside the diazirine ring, giving rise to electron dilution at the carbon atom adjacent to the diazirine carbon. The products isolated are in accord with the proposal (79AHC(24)63) that cation formation at this carbon atom leads to nitrogen extrusion, probably with formation of a vinyl cation. Thus protonated hydroxydiazirine (209) yields acetone, and methylvinyldiazirine (199) on treatment with acids yields butanone (67CB2093). [Pg.222]

The first step in the addition of an electrophile such as HBr to an alkyne involves protonation and subsequent formation of an intermediate vinyl cation. Where does propyne protonate Compare energies of 1-methylvinyl and 2-methylvinyl cations. Which is more stable Why Measure CC bond distance in the more stable cation. Does the cation incorporate a full triple bond (as in propyne) or a double bond (as in propene). Examine atomic charges and electrostatic potential maps to locate the positive charge in the two cations. Is the more stable ion the one in which the charge is better delocalized Use the charges together with information about the ions geometry to draw Lewis structures (or a series of Lewis structures) for 1-methylvinyl and 2-methylvinyl cations. [Pg.116]

The vinyl cation (Fig. 40 and III.13) in which the empty p orbital on the positive center is coplanar with the terminal methylene group, is clearly another candidate for hyperconjugative donation. The in-plane orbital readily overlaps with the odd p orbital, with formation of two delocalized orbitals and an energy gain... [Pg.35]

The obviation of side reactions is essential to the success of ADMET, and this can be realized if the proper catalyst is chosen. Catalyst choice must avoid the possibility of cation formation,13 vinyl addition, and/or formation of multiple catalytic species, all of which are detrimental to clean metathesis chemistry. Over the past 10 years, our group has utilized a variety of different catalysts, several of which are illustrated in Fig. 8.4. [Pg.438]

In contrast to the results of the reaction of tertiary and secondary alkyl cations with carbon monoxide (Figs. 1-5), which were obtained under thermodynamically controlled conditions, the results of the carbonylation with the vinyl cations were obtained under kinetically controlled conditions. This presents a difficulty in explaining the occurrence of the 1,2-CH3 shift in the reaction 16->-17, because it involves a strong increase in energy. The exclusive formation of the Z-stereoisomer 18 on carbonylation of the 1,2-dimethylvinyl cation 16 is remarkable, but does not allow an unambiguous conclusion about the detailed structure— linear 19 or bent 20—of the vinyl cation. A non-classical structure 21 can be disregarded, however, because the attack... [Pg.46]

A limited amount of information is available on vinyl cations in the gas phase. These mass spectral data suggest that the heat of formation and stability of simple alkylvinyl cations, such as CH2=8h and CH3CH=6h, is in between those of methyl and ethyl cations (2). The bulk of the evidence for the existence of vinyl cations comes from mechanistic studies in the liquid phase. Although vinyl cations have not yet been prepared in solution with lifetimes adequate for direct spectral observation, sufficient, increasing evidence has been presented for the existence of such species as transient intermediates. [Pg.206]

The experiments of Bott (17) and Noyce (19-21) show that a vinyl cation best represents the intermediate in the hydration of phenylacetylenes. In particular, the large solvent Isotope effects observed indicate a rate-limiting protonation and formation of a vinyl cation, for these values are not in agreement with solvent isotope effects observed for compounds which react by other possible mechanisms, such as one involving equilibrium formation of the vinyl cation followed by the slow attack by water. [Pg.211]

Although at first glance addition to the central carbon and formation of what seems like an allylic carbonium ion would clearly be preferred over terminal addition and a vinyl cation, a closer examination shows this not to be the case. Since the two double bonds in allenes are perpendicular to each other, addition of an electrophile to the central carbon results in an empty p orbital, which is perpendicular to the remaining rr system and hence not resonance stabilized (and probably inductively destabilized) until a 90° rotation occurs around the newly formed single bond. Hence, allylic stabilization may not be significant in the transition state. In fact, electrophilic additions to allene itself occur without exception at the terminal carbon (54). [Pg.220]

The formation of any vinyl products in electrophilic additions to RCH=C=CH2 and RCH=C=CHR is surprising, since central protonation should yield a secondary carbonium ion compared to terminal protonation and formation of a vinyl cation. Perhaps a secondary carbonium ion destabilized by... [Pg.221]

Formation of rearranged products in the solvolysis of homopropargyl systems need not involve triple-bond participation and vinyl cations in all instances. Ward and Sherman investigated the formolysis of 4-phenyl-1-butyn-l-yl brosylate, 57 (80). At 80°C in the presence of one equivalent of pyridine, they observed formation of phenyl cyclopropyl ketone, 58, and... [Pg.230]

When two equivalents of pyridine were added to the nmr sample and the probe heated to 80° C, the enol formate 61 decreased and phenyl cyclopropyl ketone 58 appeared at a rate approximately ten times faster than in the previous buffered system. The observation of intermediate 61 and the kinetic results, together with the observed induction periods, are consistent with the idea that some and perhaps all of the rearranged product ketone in the solvolysis of this system arises via double-bond participation in 61 rather than triple-bond participation and a vinyl cation (80). [Pg.231]

However, the observations of Ward and Sherman need not rule out triple-bond participation and vinyl cations in the systems studied by Hanack and co-workers (75-79). Presumably, the enol formate 61 itself arises via a transition state involving a rate-determining protonation and vinyl cation 62 (see previous section). A vinyl cation such as 62 with an adjacent phenyl group is considerably more stable and hence more accessible than a vinyl cation such as 63, stabilized only by a neighboring alkyl group. Hence, formation of enol formate 61 and its... [Pg.231]

A vinyl cation is probably an intermediate in the acetolysis of 6-phenyl-5-hexynyl brosylate, 86. At 80°, despite the inductive effect of the triple bond, the rate of acetolysis of 86 is comparable to that of the saturated analog and yields, besides the acyclic acetate 87, 36% of the rearranged acetate 88 (83). The exclusive formation of the five-membered ring rearranged product with none of... [Pg.234]

It is evident that the results of Grob on the a-bromostyrene system, 145, are most consistent with path D i.e., a unimolecular ionization and formation of an intermediate vinyl cation. Further evidence is provided by the very large effect of substituents upon the solvolysis rate, with the p-amino compound, for example, reacting some 10 times faster than the parent bromostyrene. The log... [Pg.258]

A striking result of this reinvestigation (128, 129) is the observation that the ratio of the product ketone to the acetylene formed from a-bromo-p-aminostyrene is a function of the pH (Table Vll) but that the rate at which they are formed is not. As the pH increases from 3.9 to 13.1, the relative yield of acetylene increases from 16% to 85%. Therefore, the acetylene formation by elimination of a proton from the vinyl cation (path b in route D in Scheme XI) is more susceptible to an increase in base strength than is ketone formation via the enol (path a). This observation is a rare case of pH control over product composition in a 1-El reaction. [Pg.260]

Solvolyses of these cyclic vinyl triflates at 100 in 50% aqueous ethanol, buffered with triethylamine, lead exclusively to the corresponding cyclo-alkanones. Treatment of 176 with buffered CH3COOD gave a mixture of cyclohexanone (85%) and 1-cyclohexenyl acetate (15%). Mass spectral analysis of this cyclohexanone product showed that the amount of deuterium incorporation was identical to that amount observed when cyclohexanone was treated with CH3COOD under the same conditions. This result rules out an addition-elimination mechanism, at least in the case of 174, and since concerted elimination is highly unlikely in small ring systems, it suggests a unimolecular ionization and formation of a vinyl cation intermediate in the solvolysis of cyclic triflates (170). The observed solvent m values, 174 m =. 64 175 m =. 66 and 16 m =. 16, are in accord with a unimolecular solvolysis. [Pg.275]

The reverse reaction (that is, the oxidation of a vinyl radical by Fe to the corresponding vinyl cation) may be involved in the reaction of the dimethyl ester of acetylenedicarboxyUc acid 261 with Fenton s reagent [Fe —H2O2, (217)] (216). When 261 was treated with Fe —H2O2 and the reaction mixture was extracted with ether, a small amount of furan 262 was isolated. A possible mechanism (216) for its formation may be addition of hydroxyl radical to the triple bond of 261, followed by addition of the intermediate vinyl radical to a second molecule of 261 and oxidation of the resulting radical with Fe to the corresponding vinyl cation, followed by cyclization to 262, as shown in Scheme XX. [Pg.315]

When a cyclization sequence is terminated by an alkyne, vinyl cations are formed. Capture of water leads to formation of a ketone.15... [Pg.866]

Last but not least it should be mentioned that the process of H loss from ionized ethylene 184 is a reaction which not only follows a simple (C—H) dissociation giving rise to the formation of the classical vinyl cation 31 (47). From the careful analysis of extensive ab initio calculations it has to be concluded73 that the stretching and dissociation of the (C—H) bond of ionized 184 is also coupled with a molecular... [Pg.33]

Both the butatrienyl halides 54a and 54b gave the alkyne (56) as the sole product in 97-100% yield41. The kinetics described above fit the mechanistic sequence shown in equation 20 for the formation of the product 56. The mesomeric butatrienyl vinyl cation 55... [Pg.883]

On the basis of these results we embarked on a systematic study on the synthesis of vinyl cations by intramolecular addition of transient silylium ions to C=C-triple bonds using alkynyl substituted disila alkanes 6 as precursors.(35-37) In a hydride transfer reaction with trityl cation the alkynes 6 are transformed into the reactive silylium ions 7. Under essentially nonHnucleophilic reaction conditions, i.e. in the presence of only weakly coordinating anions and using aromatic hydrocarbons as solvents, the preferred reaction channel for cations 7 is the intramolecular addition of the positively charged silicon atom to the C=C triple bond which results in the formation of vinyl cations 8-10 (Scheme 1). [Pg.66]

Interestingly, reaction of alkynyl disilane 14 with trityl cation did not result in the formation of stable vinyl cations. Obviously, the formation of the four-membered disilacyclobutane ring is unfavorable. Similarly, treatment of alkyne 15 with the pre-formed triethylsilylarenium ion 1 derived from toluene did not give the expected intramolecular transfer of the silylium ion to the triple bond. Instead, only a complex product mixture was obtained. [Pg.72]


See other pages where Vinyl cations, formation is mentioned: [Pg.260]    [Pg.895]    [Pg.896]    [Pg.225]    [Pg.260]    [Pg.895]    [Pg.896]    [Pg.225]    [Pg.109]    [Pg.214]    [Pg.215]    [Pg.216]    [Pg.216]    [Pg.218]    [Pg.219]    [Pg.220]    [Pg.229]    [Pg.231]    [Pg.237]    [Pg.243]    [Pg.266]    [Pg.277]    [Pg.291]    [Pg.53]    [Pg.13]    [Pg.870]    [Pg.873]    [Pg.65]    [Pg.72]   
See also in sourсe #XX -- [ Pg.549 ]




SEARCH



Cationic formation

Vinyl cations

Vinyl formate

Vinylic cations

© 2024 chempedia.info