Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vesicle surface reactions

In the past decades, it has become more and more obvious that students and scientists of chemistry and engineering should have some understanding of surface and colloid chemistry. The textbooks on physical chemistry tend to introduce this subject insufficiently. Modern nanotechnology is another area where the role of surface and chemistry is found of much importance. Medical diagnostics applications are also extensive, where both microscale and surface reactions are determined by different aspects of surface and colloid chemical principles. Drug delivery is much based on lipid vesicles (self-assembly structure) that are stabilized by various surface forces. [Pg.258]

Colloids of semiconductors are also quite interesting for the transmembrane PET, as they possess both the properties of photosensitizers and electron conductors. Fendler and co-workers [246-250] have shown that it is possible to fix the cadmium sulfide colloid particles onto the membranes of surfactant vesicles and have investigated the photochemical and photocatalytic reactions of the fixed CdS in the presence of various electron donors and acceptors. Note, that there is no vectorial transmembrane PET in these systems. The vesicle serves only as the carrier of CdS particles which are selectively fixed either on the inner or on the outer vesicle surface and are partly embedded into the membrane. However, the size of the CdS particle is 20-50 A, i.e. this particle can perhaps span across the notable part of the membrane wall. Therefore it seems attractive to use the photoconductivity of CdS for the transmembrane PET. Recently Tricot and Manassen [86] have reported the observation of PET across CdS-containing membranes (see System 32 of Table 1), but the mechanism of this process has not been elucidated. Note, that metal sulfide semiconductor photosensitizers can be deposited also onto planar BLMs [251],... [Pg.50]

The dilemma posed by these considerations was resolved for the DHP-organized system when it was noted that upon illumination the initially compartmented MV + partially leaked out of the vesicles [108]. Thus, the observed reaction actually occurred between reactants adsorbed on the same vesicle surface. The mechanism of this unprecedented light-induced scrambling of MV + is still not understood. Likewise, subsequent investigations of the PC-organized system provided evidence for transmembrane leakage of a small amount of the compartmented (C7)2V + ion, which then facilitated transmembrane electron transport [109]. Specifically, the reaction characteristics were duplicated when the amphiphilic Ru(bpy)3 + analog was bound only to the opposite side of the membrane as the oxidative quencher... [Pg.2983]

A EXPERIMENTAL FIGURE 17-8 Vesicle buds can be visualized during in vitro budding reactions. When purified COPII coat components are incubated with isolated ER vesicles or artificial phospholipid vesicles (liposomes), polymerization of the coat proteins on the vesicle surface induces emergence of highly curved buds. In this electron micrograph of an in vitro budding reaction, note the distinct membrane coat, visible as a dark protein layer, present on the vesicle buds. [From K. Matsuoka etal., 1988, Ce//93(2) 263.[... [Pg.708]

Fig. 3 Schematic of the different aspects of surface functionalization, patterning and analysis treated in this review. The topic is introduced and developed starting from the discussion of well-defined model systems (SAMs on Au). The determination of structure-reactivity relationships, and in particular the way conformational order affects the reactivity of NHS active esters will be discussed. Using iCFM, very localized information on surface reactions can be quantitatively measured in situ for SAM-based systems. The extension of the dimensionality to quasi-3D systems via the immobilization of den-drimers and the fabrication of thin reactive homopolymer films will be addressed, as well as micro- and nanopatterning approaches via soft and scanning probe lithography. Here we discuss SAM-based, as well as bilayer/vesicle-based systems... Fig. 3 Schematic of the different aspects of surface functionalization, patterning and analysis treated in this review. The topic is introduced and developed starting from the discussion of well-defined model systems (SAMs on Au). The determination of structure-reactivity relationships, and in particular the way conformational order affects the reactivity of NHS active esters will be discussed. Using iCFM, very localized information on surface reactions can be quantitatively measured in situ for SAM-based systems. The extension of the dimensionality to quasi-3D systems via the immobilization of den-drimers and the fabrication of thin reactive homopolymer films will be addressed, as well as micro- and nanopatterning approaches via soft and scanning probe lithography. Here we discuss SAM-based, as well as bilayer/vesicle-based systems...
The main supramolecular self-assembled species involved in analytical chemistry are micelles (direct and reversed), microemulsions (oil/water and water/oil), liposomes, and vesicles, Langmuir-Blodgett films composed of diphilic surfactant molecules or ions. They can form in aqueous, nonaqueous liquid media and on the surface. The other species involved in supramolecular analytical chemistry are molecules-receptors such as calixarenes, cyclodextrins, cyclophanes, cyclopeptides, crown ethers etc. Furthermore, new supramolecular host-guest systems arise due to analytical reaction or process. [Pg.417]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

The A20 antibody did not bind significantly to native SR vesicles, but solubilization of the membrane with C Eg or permeabilization of the vesicles by EGTA exposed its epitope and increased the binding more than 20-fold [139], By contrast, the A52 antibody reacted freely with the native sarcoplasmic reticulum, while the A25 antibody did not react either in the native or in the C Eg solubilized or permeabilized preparations, and required denaturation of Ca " -ATPase for reaction, Clarke et al, [139] concluded that the epitope for A52 is freely exposed on the cytoplasmic surface, while the epitope for A20 was assigned to the luminal surface, where it became accessible to cytoplasmic antibodies only after solubilization or permeabilization of the membrane. The epitope for A25 is assumed to be on the cytoplasmic surface in a folded structure and becomes accessible only after denaturation. [Pg.90]

Of the 20 residues that react with A-ethylmaleimide in the non-reduced denatured Ca -ATPase at least 15 are available for reaction with various SH reagents in the native enzyme [75,239,310]. These residues are all exposed on the cytoplasmic surface. After reaction of these SH groups with Hg-phenyl azoferritin, tightly packed ferritin particles can be seen by electron microscopy only on the outer surface of the sarcoplasmic reticulum vesicles [143,311-314]. Even after the vesicles were ruptured by sonication, aging, or exposure to distilled water, alkaline solutions or oleate, the asymmetric localization of the ferritin particles on the outer surface was preserved [311,313,314]. [Pg.91]

The favourable properties which mark out vesicles as protocell models were confirmed by computer simulation (Pohorill and Wilson, 1995). These researchers studied the molecular dynamics of simple membrane/water boundary layers the bilayer surface fluctuated in time and space. The model membrane consisted of glycerine-1-monooleate defects were present which allowed ion transport to occur, whereby negative ions passed through the bilayer more easily than positive ions. The membrane-water boundary layer should be particularly suited to reactions which are accelerated by heterogeneous catalysis. Thus, the authors believe that these vesicles fulfil almost all the conditions required for the first protocells on earth ... [Pg.267]

The great importance of minerals in prebiotic chemical reactions is undisputed. Interactions between mineral surfaces and organic molecules, and their influence on self-organisation processes, have been the subject of much study. New results from Szostak and co-workers show that the formation of vesicles is not limited to one type of mineral, but can involve various types of surfaces. Different minerals were studied in order to find out how particle size, particle shape, composition and charge can influence vesicle formation. Thus, for example, montmorillonite (Na and K10), kaolinite, talc, aluminium silicates, quartz, perlite, pyrite, hydrotalcite and Teflon particles were studied. Vesicle formation was catalysed best by aluminium solicate, followed by hydrotalcite, kaolinite and talcum (Hanczyc et al., 2007). [Pg.273]

Liposomes containing PE residues can be reacted with glutaraldehyde to form an activated surface possessing reactive aldehyde groups. A 2-step glutaraldehyde reaction strategy is probably best when working with liposomes, since precipitated protein would be difficult to remove from a vesicle suspension. [Pg.891]

Liposomes containing PE lipid components may be activated with these crosslinkers to contain iodoacetyl derivatives on their surface (Figure 22.29). The reaction conditions described in Chapter 5, Section 1.5 may be used, substituting a liposome suspension for the initial protein being modified in that protocol. The derivatives are stable enough in aqueous solution to allow purification of the modified vesicles from excess reagent (by dialysis or gel filtration) without... [Pg.898]

Mechanistic studies of organic reactivities in vesicles have focused on two questions the first is the application of the pseudophase model to reactions in vesicles and the second that of reaction at the inner and outer vesicular surfaces. [Pg.268]

This limited amount of kinetic evidence suggests that the kinetic models developed for reactivity in aqueous micelles are directly applicable to reactions in vesicles, and that the rate enchancements have similar origins. There is uncertainty as to the appropriate volume element of reaction, especially if the vesicular wall is sufficiently permeable for reaction to occur on both the inner and outer surfaces, because these surfaces will have different radii of curvature and one will be concave and the other convex. Thus binding, exchange and rate constants may be different at the two surfaces. [Pg.270]

These microdroplets can act as a reaction medium, as do micelles or vesicles. They affect indicator equilibria and can change overall rates of chemical reactions, and the cosurfactant may react nucleophilically with substrate in a microemulsion droplet. Mixtures of surfactants and cosurfactants, e.g. medium chain length alcohols or amines, are similar to o/w microemulsions in that they have ionic head groups and cosurfactant at their surface in contact with water. They are probably best described as swollen micelles, but it is convenient to consider their effects upon reaction rates as being similar to those of microemulsions (Athanassakis et al., 1982). [Pg.271]


See other pages where Vesicle surface reactions is mentioned: [Pg.391]    [Pg.43]    [Pg.46]    [Pg.146]    [Pg.61]    [Pg.65]    [Pg.115]    [Pg.1250]    [Pg.2975]    [Pg.2976]    [Pg.2981]    [Pg.183]    [Pg.59]    [Pg.93]    [Pg.194]    [Pg.266]    [Pg.478]    [Pg.162]    [Pg.165]    [Pg.173]    [Pg.190]    [Pg.338]    [Pg.296]    [Pg.335]    [Pg.111]    [Pg.89]    [Pg.9]    [Pg.296]    [Pg.872]    [Pg.255]    [Pg.324]    [Pg.725]    [Pg.229]    [Pg.269]    [Pg.54]   
See also in sourсe #XX -- [ Pg.607 ]




SEARCH



Vesicle reactions

© 2024 chempedia.info