Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Velocity, intrinsic

Osmotic pressure other colligative properties Light scattering sedimentation velocity Intrinsic viscosity... [Pg.38]

Because metabolic studies of pesticides have been extensively conducted in animals in vitro and in vivo, in vitrcj-in vivo correlation.s have been established in animals. By comparing in vitro data between humans and animals and assuming the in vifra-in vivo correlations observed in animals also exist in humans in a similar manner, one may be able to predict in vivo human metabolism of pesticides using in vitro human pesticide metabolism data. Therefore, the parameters obtained from the in vitro studies, such as /ffii (Michadis-Menten constant), (maximal reaction velocity), intrinsic clearance (inhibition... [Pg.139]

Electrophoresis uses the force of an apphed electric field to move molecules or particles, often through a polymer matrix. The electric field acts on the intrinsic charge of a substance, and the force on each substance is proportional to the substance s charge or surface potential. The resulting force on the substance results in a distinct velocity for the substance that is proportional to the substance s surface potential. If two different substances have two different velocities, an electric field apphed for a fixed amount of time results in different locations on the matrix for these substances. [Pg.178]

In the presence of a buffer with constant composition across the electrophoretic chamber, the angle of deflection (0) of the solute in the electric field is dependent upon the intrinsic electrophoretic mobility of the solute (p. ), the linear velocity of the buffer (v) and the current through the chamber (I) and can be described as [17] ... [Pg.293]

It is possible to eliminate the mass transfer resistances in Steps 2, 3, 7, and 8 by grinding the catalyst to a fine powder and exposing it to a high-velocity gas stream. The concentrations of reactants immediately adjacent to the catalytic surface are then equal to the concentrations in the bulk gas phase. The resulting kinetics are known as intrinsic kinetics since they are intrinsic to the catalyst surface and not to the design of the pores, or the pellets, or the reactor. [Pg.354]

Few fixed-bed reactors operate in a region where the intrinsic kinetics are applicable. The particles are usually large to minimize pressure drop, and this means that diffusion within the pores. Steps 3 and 7, can limit the reaction rate. Also, the superficial fluid velocity may be low enough that the external film resistances of Steps 2 and 8 become important. A method is needed to estimate actual reaction rates given the intrinsic kinetics and operating conditions within the reactor. The usual approach is to define the effectiveness factor as... [Pg.362]

The question here is twofold first, how to prescribe a precise experimental procedure for defining the "turbulent flame speed" and second, is this quantity independent of the way used to initiate the flame This is the case for a laminar flame, and the flame propagation velocity Sl as well as the characteristic laminar flame thickness is 3 intrinsic quantity. [Pg.139]

Minimize the effects of transport phenomena If we are interested in the intrinsic kinetic performance of the catalyst it is important to eliminate transport limitations, as these will lead to erroneous data. We will discuss later in this chapter how diffusion limitations in the pores of the catalyst influence the overall activation energy. Determining the turnover frequency for different gas flow velocities and several catalyst particle sizes is a way to establish whether transport limitations are present. A good starting point for testing catalysts is therefore ... [Pg.205]

In the present chapter we shall be concerned with quantitative treatment of the swelling action of the solvent on the polymer molecule in infinitely dilute solution, and in particular with the factor a by which the linear dimensions of the molecule are altered as a consequence thereof. The frictional characteristics of polymer molecules in dilute solution, as manifested in solution viscosities, sedimentation velocities, and diffusion rates, depend directly on the size of the molecular domain. Hence these properties are intimately related to the molecular configuration, including the factor a. It is for this reason that treatment of intramolecular thermodynamic interaction has been reserved for the present chapter, where it may be presented in conjunction with the discussion of intrinsic viscosity and related subjects. [Pg.596]

Diffusion and sedimentation measurements on dilute solutions of flexible chain molecules could be used to determine the molecular extension or the expansion factor a. However, the same information may be obtained with greater precision and with far less labor from viscosity measurements alone. For anisometric particles such as are common among proteins, on the other hand, sedimentation velocity measurements used in conjunction with the intrinsic viscosity may yield important information on the effective particle size and shape. ... [Pg.629]

Velocity Most metals and alloys are protected from corrosion, not by nobility [a metal s inherent resistance to enter into an electrochemical reaction with that environment, e.g., the (intrinsic) inertness of gold to (almost) everything but aqua regia], but by the formation of a protective film on the surface. In the examples of film-forming protective cases, the film has similar, but more limiting, specific assignment of that exemplaiy-type resistance to the exposed environment (not nearly so broad-based as noted in the case of gold). Velocity-accelerated corrosion is the accelerated or increased rate of deterioration or attack on a metal surface because of relative movement between a corrosive fluid and the metal surface, i.e., the instability (velocity sensitivity) of that protective film. [Pg.9]

The lack of a method to determine the spatial distributions of permeability has severely limited our ability to understand and mathematically describe complex processes within permeable media. Even the degree of variation of intrinsic permeability that might be encountered in naturally occurring permeable media is unknown. Samples with permeability variations will exhibit spatial variations in fluid velocity. Such variations may significantly affect associated physical phenomena, such as biological activity, dispersion and colloidal transport. Spatial variations in the porosity and permeability, if not taken into account, can adversely affect the determination of any associated properties, including multiphase flow functions [16]. [Pg.369]

The porosity cj)(z) for the voxel at z, is determined as described in Section 4.1.4.1. Note that the observed spin-displacement density function, q(z, vn), is not actually associated with the intrinsic value of spin density, q(z), due to the transverse and longitudinal relaxation. However, this does not affect the calculated average velocity given in Eq. (4.1.23) because the spin density terms in the denominator and nominator cancel each other. [Pg.371]

Abstract Acoustic cavitation is the formation and collapse of bubbles in liquid irradiated by intense ultrasound. The speed of the bubble collapse sometimes reaches the sound velocity in the liquid. Accordingly, the bubble collapse becomes a quasi-adiabatic process. The temperature and pressure inside a bubble increase to thousands of Kelvin and thousands of bars, respectively. As a result, water vapor and oxygen, if present, are dissociated inside a bubble and oxidants such as OH, O, and H2O2 are produced, which is called sonochemical reactions. The pulsation of active bubbles is intrinsically nonlinear. In the present review, fundamentals of acoustic cavitation, sonochemistry, and acoustic fields in sonochemical reactors have been discussed. [Pg.1]

These data show clearly that that the intrinsic behavior in pure metals is visco-elastic with the velocity proportional to the applied stress (Newtonian viscosity). Although there is a large literature that speaks of a quasi-static Peierls-Nabarro stress, this is a fiction, probably resulting from studying of insufficiently pure metals. [Pg.62]

Intrinsic resistance to dislocation motion can be measured in either of two ways direct measurements of individual dislocation velocities (Vreeland and Jassby, 1973) or by measurements of internal friction (Granato, 1968). In both cases, for pure simple metals there is little or no static barrier to motion. As a result of viscosity there is dynamic resistance, but the viscous drag coefficient is very small (10" to 10" Poise). This is only 0.1 to 1 percent of the viscosity of water (at STP) and about 1 percent of the viscosity of liquid metals at their... [Pg.84]

Non membership and/or binarity are not the reasons for the scatter M 67, since both low and high Li stars are confirmed radial velocity members and the spread is still present when considering single stars only. Under the very reasonable assumption that cluster stars were all born with the same Li content, the scatter is therefore intrinsic and due to different amounts of Li depletion. [Pg.175]

The mass of the object appears on both sides of the equation and thus cancels, hence the escape velocity is an intrinsic property of the star or planet from which you are trying to escape. So the concept of a black hole requires that the escape velocity should be set at the speed of light, the fastest possible velocity and a point at which not even light can escape, hence it must be black. Setting ve = c we can rearrange Equation 4.12 to calculate the radius at which a star or body of known mass will become a black hole ... [Pg.107]

The attempt to show that surface tension phenomena were the cause of osmotic pressure was first made by Jager, and his theories were vigorously supported and developed by Traube, whose conclusions we shall state and examine briefly. He finds that the more a dissolved substance reduces the surface tension of water the greater is the velocity of osmosis of the solution. Hence he concludes that it is the difference in the surface tensions of solvent and solution which determines the direction and velocity of osmosis. The direction of flow Traube obtains by the following consideration let M (Fig. 7) be a membrane separating two liquids A and B. The molecules of each liquid are then drawn into its interior by the cohesion or intrinsic pressure. If the intrinsic... [Pg.30]


See other pages where Velocity, intrinsic is mentioned: [Pg.24]    [Pg.166]    [Pg.380]    [Pg.510]    [Pg.108]    [Pg.97]    [Pg.333]    [Pg.209]    [Pg.214]    [Pg.484]    [Pg.76]    [Pg.361]    [Pg.365]    [Pg.565]    [Pg.585]    [Pg.142]    [Pg.220]    [Pg.224]    [Pg.450]    [Pg.175]    [Pg.40]    [Pg.556]    [Pg.530]    [Pg.2]    [Pg.405]    [Pg.489]    [Pg.489]    [Pg.597]    [Pg.59]    [Pg.6]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



© 2024 chempedia.info