Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Individual dislocation velocities

Intrinsic resistance to dislocation motion can be measured in either of two ways direct measurements of individual dislocation velocities (Vreeland and Jassby, 1973) or by measurements of internal friction (Granato, 1968). In both cases, for pure simple metals there is little or no static barrier to motion. As a result of viscosity there is dynamic resistance, but the viscous drag coefficient is very small (10" to 10" Poise). This is only 0.1 to 1 percent of the viscosity of water (at STP) and about 1 percent of the viscosity of liquid metals at their... [Pg.84]

Dislocations move when they are exposed to a stress field. At stresses lower than the critical shear stress, the conservative motion is quasi-viscous and is based on thermal activation that overcomes the obstacles which tend to pin the individual dislocations. At very high stresses, > t7crit, the dislocation velocity is limited by the (transverse) sound velocity. Damping processes are collisions with lattice phonons. [Pg.57]

Dislocation motion in covalent crystals is thermally activated at temperatures above the Einstein (Debye) temperature. The activation energies are well-defined, and the velocities are approximately proportional to the applied stresses (Sumino, 1989). These facts indicate that the rate determining process is localized to atomic dimensions. Dislocation lines do not move concertedly. Instead, sharp kinks form along their lengths, and as these kinks move so do the lines. The kinks are localized at individual chemical bonds that cross the glide plane (Figure 5.8). [Pg.74]


See other pages where Individual dislocation velocities is mentioned: [Pg.59]    [Pg.59]    [Pg.617]    [Pg.44]    [Pg.11]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Individual Dislocation Velocities (Microscopic Distances)

© 2024 chempedia.info