Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vegetables oxidation

C, ascorbic acid Citrus fruits, leafy vegetables Oxidation-reduction reactions Reduced resistance to infection... [Pg.101]

Flavonoid Flavonol Quercetin (vegetable) Oxidative stress... [Pg.3]

CifiHjjOi. A fatly acid which is easily oxidized in air.-It occurs widely, in the form of glycerides, in vegetable oils and in mammalian lipids. Cholesieryl linoleale is an important constituent of blood. The add also occurs in lecithins. Together with arachidonic acid it is the most important essential fatty acid of human diet. [Pg.240]

They are widely distributed in vegetable lipids, and in the body fat of animals, though animals cannot synthesize them. They have vitamin E activity and can protect unsaturated lipids against oxidation. Four are found naturally ... [Pg.400]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

The reaction mechanisms by which the VOCs are oxidized are analogous to, but much more complex than, the CH oxidation mechanism. The fastest reacting species are the natural VOCs emitted from vegetation. However, natural VOCs also react rapidly with O, and whether they are a net source or sink is determined by the natural VOC to NO ratio and the sunlight intensity. At high VOC/NO ratios, there is insufficient NO2 formed to offset the O loss. However, when O reacts with the internally bonded olefinic compounds, carbonyls are formed and, the greater the sunshine, the better the chance the carbonyls will photolyze and produce OH which initiates the O.-forming chain reactions. [Pg.370]

Iron. As with copper, some dozen or more materials are used as fertilizer Hon sources. These include ferrous and ferric oxides and sulfides and ferrous ammonium phosphate [10101 -60-7] ferrous ammonium sulfate [10045-89-3] frits, and chelates. In many instances, organic chelates are more effective than inorganic materials. Recommended appHcation rates range widely according to both type of micronutrient used and crop. Quantities of Fe range from as low as 0.5 kg/hm as chelates for vegetables to as much as a few hundred kg/hm as ferrous sulfate for some grains. [Pg.242]

BHA and BHT, which are both fat soluble, are effective ia protecting animal fat from oxidation, and are often added duting the rendering process. Propyl gallate is also effective, but it has limited fat solubiUty, and turns bluish black ia the presence of iron. It is typically used as a synergist ia combination with BHA or BHT. TBHQ is most effective against oxidation ia polyunsaturated vegetable oils (qv), and is often used ia soybean oil (19). [Pg.437]

From antiquity, glues had been made almost entirely from materials of animal or vegetable origin, and were sensitive to moisture, oxidation, and bacterial or fungus attack. Because of these deficiencies, production of durable plywood, for example, was not possible. The modern plywood industry actually owes its growth to the availabiUty of relatively low cost urea adhesives. Plywood and chipboard or wood chip glues are often made at the plywood and chip board mill. [Pg.325]

Polyunsaturated fatty acids in vegetable oils, particularly finolenic esters in soybean oil, are especially sensitive to oxidation. Even a slight degree of oxidation, commonly referred to as flavor reversion, results in undesirable flavors, eg, beany, grassy, painty, or fishy. Oxidation is controlled by the exclusion of metal contaminants, eg, iron and copper addition of metal inactivators such as citric acid minimum exposure to air, protection from light, and selective hydrogenation to decrease the finolenate content to ca 3% (74). Careful quality control is essential for the production of acceptable edible soybean oil products (75). [Pg.302]

It can be found in animal tissues (1), in vegetables and fmit (2,3), or in spring water (4), and has also been identified in meteorites (5). It is formed in alcohohc fermentation (6) and in the chemical and biochemical oxidation of fats. Succinic acid is present in amber (7) Succinuni) and can be obtained by distillation, by which method it was first isolated by Georgius Agricola in 1550. [Pg.534]

As a coen2yme component in tissue oxidation—reduction and respiration, riboflavin is distributed in some degree in virtually aU naturally occurring foods. Liver, heart, kidney, milk, eggs, lean meats, malted barley, and fresh leafy vegetables are particularly good sources of riboflavin (see Table 1). It does not seem to have long stabiUty in food products (8). [Pg.74]

Fertile sources of carotenoids include carrots and leafy green vegetables such as spinach. Tomatoes contain significant amounts of the red carotenoid, lycopene. Although lycopene has no vitamin A activity, it is a particularly efficient antioxidant (see Antioxidants). Oxidation of carotenoids to biologically inactive xanthophyUs represents an important degradation pathway for these compounds (56). [Pg.103]

Most waxes are complex mixtures of molecules with different carbon lengths, stmctures, and functionaHty. Attempts to measure the exact chemical composition are extremely difficult, even for the vegetable waxes, which are based on a relatively few number of basic molecules. Products such as oxidised microcrystaHine wax not only have a mixture of hydrocarbon lengths and types as starting materials, but also add complexity through the introduction of various types of carboxyHc functionaHty onto those hydrocarbons during the oxidation process. [Pg.317]

Zirconium tetrafluoride [7783-64-4] is used in some fluoride-based glasses. These glasses are the first chemically and mechanically stable bulk glasses to have continuous high transparency from the near uv to the mid-k (0.3—6 -lm) (117—118). Zirconium oxide and tetrachloride have use as catalysts (119), and zirconium sulfate is used in preparing a nickel catalyst for the hydrogenation of vegetable oil. Zirconium 2-ethyIhexanoate [22464-99-9] is used with cobalt driers to replace lead compounds as driers in oil-based and alkyd paints (see Driers and metallic soaps). [Pg.433]


See other pages where Vegetables oxidation is mentioned: [Pg.269]    [Pg.270]    [Pg.249]    [Pg.678]    [Pg.3]    [Pg.479]    [Pg.480]    [Pg.401]    [Pg.269]    [Pg.270]    [Pg.249]    [Pg.678]    [Pg.3]    [Pg.479]    [Pg.480]    [Pg.401]    [Pg.273]    [Pg.686]    [Pg.728]    [Pg.369]    [Pg.124]    [Pg.216]    [Pg.17]    [Pg.449]    [Pg.103]    [Pg.481]    [Pg.250]    [Pg.278]    [Pg.324]    [Pg.475]    [Pg.501]    [Pg.210]    [Pg.66]    [Pg.132]    [Pg.298]    [Pg.186]    [Pg.300]    [Pg.302]    [Pg.373]    [Pg.21]    [Pg.201]    [Pg.214]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Azelaic Acid from Vegetable Feedstock via Oxidative Cleavage with Ozone or Oxygen

Oxidation of vegetables

Oxidative stability of vegetable oils

Vegetable oils oxidative deterioration

Vegetable oils oxidative stability

Vegetable oxides

Vegetable-oxidation systems

Vegetables lipid oxidation

© 2024 chempedia.info