Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vaporization atmospheric distillation unit

A combination unit is a special type of unit that was developed to reduce the investment for a small refinery. In effect, one main distillation unit serves as a crude fi-actionator as well as the cat unit primary fractionator. This same tower also serves the naphtha reformer and visbreaker. A schematic diagram of a combination unit is shown in Figure 2. Crude oil is topped (material boiling below 650°F is removed) in the atmospheric tower, and the topped crude is sent to the combination tower along with cat products and naphtha reformer products. These latter streams provide heat to distill the topped crude and also, being more volatile than topped crude, provide a lifting effect which assists in vaporizing more of the crude. [Pg.21]

The atmospheric reduced crude is the feedstock for the vacuum distillation unit. To prevent thermal decomposition (cracking) of the higher boiling point hydrocarbons in the crude oil, the pressure in the vacuum distillation fractionation column is reduced to about one-twentieth of an atmosphere absolute (one atmosphere pressure is 14.7 psia or 760 mm Fig). This effectively reduces the boiling points of the hydrocarbons several hundred degrees Fahrenheit. The components boiling below about 1050°F (565°C) are vaporized and removed as vacuum gas... [Pg.983]

Most atmospheric columns contain from 30 to 50 fractionation trays. For each sidestream desired, about five to eight trays are required, plus additional trays above and below the primary trays. The various sidestreams collected from the distillation column contain lighter boiling products that must be removed. Smaller reboiling units are used to remove lighter products and direct them back into the distillation column as vapor. Also, refluxing units are sometimes employed to condense and remove heavy end products from collected fractions. These condensed heavier products are reintroduced into the lower trays. [Pg.6]

The third important loss is by air convection inside the distiller. This air circulation is a necessary accompaniment of water distillation. The higher the basin temperature, the higher is the water vapor pressure and the lower the ratio of air to water vapor in the atmosphere of the distillation unit. Factors tending to maximize basin temperatures will therefore reduce this heat loss because of the lower concentration of air in the atmosphere of the distiller enclosure. But as radiation loss increases with rise in basin temperature, these two losses cannot be simultaneously minimized by temperature change. Any effort toward reducing convection in the distiller would be undesirable, because this is the only significant mechanism for water distillation. [Pg.167]

Combustion. The primary reaction carried out in the gas turbine combustion chamber is oxidation of a fuel to release its heat content at constant pressure. Atomized fuel mixed with enough air to form a close-to-stoichiometric mixture is continuously fed into a primary zone. There its heat of formation is released at flame temperatures deterruined by the pressure. The heat content of the fuel is therefore a primary measure of the attainable efficiency of the overall system in terms of fuel consumed per unit of work output. Table 6 fists the net heat content of a number of typical gas turbine fuels. Net rather than gross heat content is a more significant measure because heat of vaporization of the water formed in combustion cannot be recovered in aircraft exhaust. The most desirable gas turbine fuels for use in aircraft, after hydrogen, are hydrocarbons. Fuels that are liquid at normal atmospheric pressure and temperature are the most practical and widely used aircraft fuels kerosene, with a distillation range from 150 to 300 °C, is the best compromise to combine maximum mass —heat content with other desirable properties. For ground turbines, a wide variety of gaseous and heavy fuels are acceptable. [Pg.412]

In two stage units, it is often economical to distill more gas oil in the vacuum stage and less in the atmospheric stage than the maximum attainable. Gas formed in the atmospheric tower bottoms piping at high temperatures tends to overload the vacuum system and thereby to reduce the capacity of the vacuum tower. The volume of crude vaporized at the flash zone is approximately equal to the total volume of distillate products. Of course, the vapor at this point contains some undesirable heavy material and the liquid still contains some valuable distillate products. The concentration of heavy ends in the vapor is reduced by contact with liquid on the trays as the vapor passes up the tower. This liquid reflux is induced by removing heat farther up in the tower. [Pg.215]

Cracking imposes an additional penalty in a vacuum unit in that it forms gas which cannot be condensed at the low pressures employed. This gas must be vented by compressing it to atmospheric pressure. This is accomplished by means of steam jet ejectors. Ideally, it would be possible to operate a vacuum pipe still without ejectors, with the overhead vapors composed only of steam. In practice, however, leakage of air into the system and the minor cracking which occurs make it necessary to provide a means of removing non-condensibles from the system. In addition to the distillation of atmospheric residuum, the lube vacuum pipe still is also used for rerunning of off specification lube distillates. [Pg.217]

The atmospheric bottom, also known as reduced oil, is then sent to the vacuum unit where it is further separated into vacuum gas oil and vacuum residues. Vacuum distillation improves the separation of gas oil distillates from the reduced oil at temperatures less than those at which thermal cracking would normally take place. The basic idea on which vacuum distillation operates is that, at low pressure, the boiling points of any material are reduced, allowing various hydrocarbon components in the reduced crude oil to vaporize or boil at a lower temperature. Vacuum distillation of the heavier product avoids thermal cracking and hence product loss and equipment fouling. [Pg.10]

Butane from natural gas is cheap and abundant in the United States, where it is used as an important feedstock for the synthesis of acetic acid. Since acetic acid is the most stable oxidation product from butane, the transformation is carried out at high butane conversions. In the industrial processes (Celanese, Hills), butane is oxidized by air in an acetic acid solution containing a cobalt catalyst (stearate, naphthenate) at 180-190 °C and 50-70 atm.361,557 The AcOH yield is about 40-45% for ca. 30% butane conversion. By-products include C02 and formic, propionic and succinic acids, which are vaporized. The other by-products are recycled for acetic acid synthesis. Light naphthas can be used instead of butane as acetic adic feedstock, and are oxidized under similar conditions in Europe where natural gas is less abundant (Distillers and BP processes). Acetic acid can also be obtained with much higher selectivity (95-97%) from the oxidation of acetaldehyde by air at 60 °C and atmospheric pressure in an acetic acid solution and in the presence of cobalt acetate.361,558... [Pg.386]

A thermal cracking unit for waxes consists of a furnace, a primary separation column, a stabilization column and a distillation section. The feedstock is vaporized, mixed with steam to 40 per cent weight, and enters a tubular furnace in which the residence time is a few seconds (2 to 10 s) at 500 to 600°C. Once-tbrougb cbnversion is relatively low (15 to 30 per cent) to avoid side reactions. Operation is at atmospheric pressure or ghtly above. Direct quench, or quench with a heat transfer fluid, generates steam. Primary fiactionation allows the recycling of the unconverted part of the feedstock. [Pg.180]

The liquid stream passes a separator (2), then a let-down valve (3) for pressure release, and enters a flash evaporator (4) where the major part of inerts and unconverted reactants is taken overhead. The flashed-off gases are compressed and returned to the reactor, whereas the liquid is heated and fed to a first distillation column (5), from which vaporized aldehydes are taken as head stream. As the bottoms still contain aldehydes, a second distillation column (6) with sub-atmospheric pressure is required to concentrate the catalyst solution. The gaseous aldehydes from both units are condensed and sent to the upgrading section the separated gases (7) are recycled (after compression) or vented. In order to limit... [Pg.78]


See other pages where Vaporization atmospheric distillation unit is mentioned: [Pg.983]    [Pg.213]    [Pg.50]    [Pg.52]    [Pg.9]    [Pg.135]    [Pg.278]    [Pg.213]    [Pg.7]    [Pg.285]    [Pg.309]    [Pg.105]    [Pg.63]    [Pg.243]    [Pg.17]    [Pg.58]    [Pg.348]    [Pg.336]    [Pg.419]    [Pg.406]    [Pg.208]    [Pg.1327]    [Pg.214]    [Pg.288]    [Pg.263]    [Pg.336]    [Pg.30]    [Pg.130]    [Pg.348]    [Pg.1256]    [Pg.1684]    [Pg.419]    [Pg.214]    [Pg.102]    [Pg.1150]    [Pg.3101]    [Pg.406]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Distillation atmospheric

Vapor distillate

Vaporization distillation

© 2024 chempedia.info