Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor pressure enthalpy

Each fluid is described by a BWR equation of state whose coefficients are adjusted to obtain simultaneously the vapor pressure, enthalpies of liquid and gas as well as the compressibilities. The compressibility z of any fluid is calculated using the equation below ... [Pg.119]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

Achener, P. Y., 1964, The Determination of the Latent Heat of Vaporization, Vapor Pressure, Enthalpy, and Density of Liquid Rubidium and Cesium up to 1,800°F, Proc. 1963 High Temperature Liquid Metal Heat Transfer Technology Meeting, Vol. 1, pp. 3-25 USAEC Rep. ORNL-3605. (2) Achener, P. Y, 1965, The Determination of the Latent Heat of Vaporization, Vapor Pressure of Potassium from 1,000-1,900°F, Aerojet-General Nucleonics Rep. AGN-8141. (2)... [Pg.519]

Smith, N.K., Stewart, Jr., R.C., Osbom, A.G. (1980) Pyrene vapor pressures, enthalpy of combustion, and chemical thermodynamic properties. J. Chem. Thermodyn. 21, 919-926. [Pg.915]

Verevkin, S.P. and Schick, C. Determination of vapor pressures, enthalpies of sublimation, enthalpies of vaporization, and enthalpies of fusion of a series of chloroaminobenzenes and chloronitrobenzenes. Fluid Phase Equillb., 211 (2) 161-177,2003. [Pg.1737]

Cohesive properties they are anomalous as evidenced in the variation of melting temperatures, vapor pressures, enthalpies of subhmation (see Fig. 11 of Chap. C) and dissolution and bulk moduh vs. atomic number Z (to be discussed in Chap. C) ... [Pg.41]

PhysChem Batch Advanced Chemistry Development Inc. www.acdlabs.com pKa, log Kow, log D, K c, bioconcentration factor, solubility at a certain pH, boiling point, vapor pressure, enthalpy of vaporization, flash point, macroscopic properties... [Pg.52]

This table summarizes the vapor pressure, enthalpy (heat) of vaporization, and surface tension of water as accepted by the International Association for the Properties of Water and Steam (www.iapws.org) for general and scientific use. The vapor pressure and heat of vaporization are calculated from the equation of state of Wagner and Pruss (Ref. 1). The temperature scale is lTS-90. Additional calculations at state points not listed below can be obtained by using the NIST Standard Reference Data program REFPROP (www.nist.gov/srd/nist23.htm) or the water-specific program Steam (www.nist.gov/srd/nistl0.htm). [Pg.909]

This treatise is an exhaustive compilation of physical data on heavy water (deuterium oxide). Some of the more relevant properties that are covered include densities, critical constants, vapor pressures, enthalpies of transition, viscosity, and thermal conductivity, equation of state, and tables of thermodynamic properties as functions of temperature and pressure. [Pg.769]

This monograph is a summary and a consolidation of the results of some years of work by Tatevskii and others, extending and elaborating some procedures introduced by Rossini and others. Properties calculated include molar volume, molar refraction, vapor pressure, enthalpy of formation from atoms or eiements, Gibbs energy of formation, and enthalpy of combustion. Three different methods are used. Tables of constants and illustrations of the accuracy of the methods are given. [Pg.807]

The adsorbed water is described by the SPC model, because it is a fiist computable model well suited for very large systems (the completely saturated system contains more than 12000 water molecules). This model reproduces well the thermodynamic and structural properties around ambient temperature, like vapor pressure, enthalpy of vaporization, and radial distribution functions. ... [Pg.536]

AIST can calculate the values of density, compressibility, enthalpy, entropy, isochoric and isobaric heat capacity, speed of sound, adiabatic Joule-Thomson coefficient, thermal pressure coefficient, samrated vapor pressure, enthalpy of vaporization, heat capacities on the saturation and solidification lines, viscosity and thermal conductivity. Values of properties can be determined at temperatures from the triple point up to 1500 K and pressures up to 100 MPa. The system generates the following databases with appropriate algorithms and programs for their calculation ... [Pg.470]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

This chapter presents quantitative methods for calculation of enthalpies of vapor-phase and liquid-phase mixtures. These methods rely primarily on pure-component data, in particular ideal-vapor heat capacities and vapor-pressure data, both as functions of temperature. Vapor-phase corrections for nonideality are usually relatively small. Liquid-phase excess enthalpies are also usually not important. As indicated in Chapter 4, for mixtures containing noncondensable components, we restrict attention to liquid solutions which are dilute with respect to all noncondensable components. [Pg.93]

For non-polar components like hydrocarbons, the results are very satisfactory for calculations of vapor pressure, density, enthalpy, and specific, heat and reasonably close for viscosity and conductivity provided that is greater than 0.10. [Pg.111]

Selected physical properties are given in Table 1 and some thermodynamic properties in Table 2. Vapor pressure (P) and enthalpy of vaporization (H) over the temperature range 178.45 to 508.2 K can be calculated with an error of less than 3% from the following equations wherein the units are P, kPa Pi, mj/ mol T, K and = reduced temperature, T/ T (1) ... [Pg.92]

Chlorine, a member of the halogen family, is a greenish yellow gas having a pungent odor at ambient temperatures and pressures and a density 2.5 times that of air. In Hquid form it is clear amber SoHd chlorine forms pale yellow crystals. The principal properties of chlorine are presented in Table 15 additional details are available (77—79). The temperature dependence of the density of gaseous (Fig. 31) and Hquid (Fig. 32) chlorine, and vapor pressure (Fig. 33) are illustrated. Enthalpy pressure data can be found in ref. 78. The vapor pressure P can be calculated in the temperature (T) range of 172—417 K from the Martin-Shin-Kapoor equation (80) ... [Pg.505]

Fig. 9. Vapor-phase enthalpy of anhydrous HF where the numbers represent the partial pressure of HF in kPa (1,17,20,31,33). The critical point occurs at 188°C. To convert kPa to psi, multiply by 0.145. To convert kJ/kg to Btu/lb, multiply by 4.302 x 10 . ... Fig. 9. Vapor-phase enthalpy of anhydrous HF where the numbers represent the partial pressure of HF in kPa (1,17,20,31,33). The critical point occurs at 188°C. To convert kPa to psi, multiply by 0.145. To convert kJ/kg to Btu/lb, multiply by 4.302 x 10 . ...
Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
Some values of physical properties of CO2 appear in Table 1. An excellent pressure—enthalpy diagram (a large Mohier diagram) over 260 to 773 K and 70—20,000 kPa (10—2,900 psi) is available (1). The thermodynamic properties of saturated carbon dioxide vapor and Hquid from 178 to the critical point,... [Pg.18]

Table 2. Temperature Dependence of Vapor Pressure, Density, and Enthalpy of Methyl Chloride... Table 2. Temperature Dependence of Vapor Pressure, Density, and Enthalpy of Methyl Chloride...
An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

FIG. 2-29 Enthalpy-concentration diagram for aqueous sodium hydroxide at 1 atm. Reference states enthalpy of liquid water at 32 F and vapor pressure is zero partial molal enthalpy of infinitely dilute NaOH solution at 64 F and 1 atm is zero. [McCahe, Trans. Am. Inst. Chem. Eng., 31, 129(1935).]... [Pg.346]

FIG. 2-30 Entbalpy-concentration diagram for aqueous sulfuric acid at 1 atm. Reference states enthalpies of pure-bquid components at 32 F and vapor pressures are zero. NOTE It should be observed that the weight basis includes the vapor, which is particularly important in the two-phase region. The upper ends of the tie bnes in this region are assumed to be pure water. (Hougen and Watson, Chemical Process Principles, I, Wiley, New York, 1943. )... [Pg.347]

Correlation Methods Vapor pressure is correlated as a function of temperature by numerous methods mainly derived from the Clapeyron equation discussed in the section on enthalpy of vaporization. The classic simple equation used for correlation of low to moderate vapor pressures is the Antoine S equation (2-27). [Pg.389]

Enthalpy of Vaporization The enthalpy (heat) of vaporization AHv is defined as the difference of the enthalpies of a unit mole or mass of a saturated vapor and saturated liqmd of a pure component i.e., at a temperature (below the critical temperature) anci corresponding vapor pressure. AHy is related to vapor pressure by the thermodynamically exact Clausius-Clapeyron equation ... [Pg.393]

Although the T-s diagram is veiy useful for thermodynamic analysis, the pressure enthalpy diagram is used much more in refrigeration practice due to the fact that both evaporation and condensation are isobaric processes so that heat exchanged is equal to enthalpy difference A( = Ah. For the ideal, isentropic compression, the work could be also presented as enthalpy difference AW = Ah. The vapor compression cycle (Ranldne) is presented in Fig. H-73 in p-h coordinates. [Pg.1107]

Single-Effect Evaporators The heat requirements of a singleeffect continuous evaporator can be calculated by the usual methods of stoichiometry. If enthalpy data or specific heat and heat-of-solution data are not available, the heat requirement can be estimated as the sum of the heat needed to raise the feed from feed to product temperature and the heat required to evaporate the water. The latent heat of water is taken at the vapor-head pressure instead of at the product temperature in order to compensate partiaUv for any heat of solution. If sufficient vapor-pressure data are available for the solution, methods are available to calculate the true latent heat from the slope of the Diihriugliue [Othmer, Ind. Eng. Chem., 32, 841 (1940)]. [Pg.1145]

Energy balances differ from mass balances in that the total mass is known but the total energy of a component is difficult to express. Consequently, the heat energy of a material is usually expressed relative to its standard state at a given temperature. For example, the heat content, or enthalpy, of steam is expressed relative to liquid water at 273 K (0°C) at a pressure equal to its own vapor pressure. [Pg.364]

Next we draw the saturation curve in the hj -x coordinate system. Vapor pressures can be calculated with Eqs. (4.106) and (4.108) or taken directly from the tables. The humidity x corresponding to the saturation pressure pi,(t) is calculated with Eq. (4.83) noting that p = 0.875 bar. The enthalpy of humid saturated air is calculated with Eq. (4.94) ... [Pg.75]

Figure 2, the pressure-enthalpy plot of the standard vapor compression cycle, traces the state of the refrigerant through the refrigeration system. (Enthalpy represents the energy of the refrigerant as... [Pg.995]


See other pages where Vapor pressure enthalpy is mentioned: [Pg.175]    [Pg.240]    [Pg.25]    [Pg.45]    [Pg.52]    [Pg.194]    [Pg.65]    [Pg.277]    [Pg.579]    [Pg.175]    [Pg.240]    [Pg.25]    [Pg.45]    [Pg.52]    [Pg.194]    [Pg.65]    [Pg.277]    [Pg.579]    [Pg.327]    [Pg.48]    [Pg.245]    [Pg.66]    [Pg.18]    [Pg.512]    [Pg.458]    [Pg.381]    [Pg.2554]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Enthalpy pressure

Enthalpy vapor pressure correlation

Vapor pressure specific vaporization enthalpy

Vaporization enthalpy

© 2024 chempedia.info