Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor deposition reactor models devices

Manufacturing economics require that many devices be fabricated simultaneously in large reactors. Uniformity of treatment from point to point is extremely important, and the possibility of concentration gradients in the gas phase must be considered. For some reactor designs, standard models such as axial dispersion may be suitable for describing mixing in the gas phase. More typically, many vapor deposition reactors have such low L/R ratios that two-dimensional dispersion must be considered. A pseudo-steady model is... [Pg.426]

Modeling of Chemical Vapor Deposition Reactors for the Fabrication of Microelectronic Devices... [Pg.194]

Jensen, K. F., Modeling of chemical vapor deposition reactors for the fabrication cf microelectronic devices, in Chemical and Catalytic Reactor Modeling. Washington, D.C. American Chemical Society, 1984. [Pg.685]

Since no synthetic chemistiy infrastructure was available at the Department (or, indeed, the Institute) before 2008, polyciystalline samples of catalysts had to be obtained from external, often industrial, partners. In order to produce model systems in house, researchers in the Department of Inorganic Chemistry developed a suite of instruments allowing the synthesis of metal oxides by physical vapor deposition of elements and by annealing procedures at ambient pressure. They chose the dehydrogenation of ethylbenzene to styrene on iron oxides as the subject of their first major study. Figure 6.6 summarizes the main results. The technical catalyst (A) is a complex convolution of phases, with the active sites located at the solid-solid interface. It was possible to synthesize well-ordered thin films (D) of the relevant ternary potassium iron oxide and to determine their chemical structure and reactivity. In parallel. Department members developed a micro-reactor device (B) allowing them to measure kinetic data (C) on such thin films. In this way, they were able to obtain experimental data needed for kinetic modeling under well-defined reaction conditions, which they could use to prove that the model reaction occurs in the same way as the reaction in the real-life system. Thin oxide... [Pg.243]


See also in sourсe #XX -- [ Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.210 ]




SEARCH



Deposition reactor

Devices modeling

Vapor modeling

Vaporization device

© 2024 chempedia.info