Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidation With Vanadium Complexes

The development of transition metal mediated asymmetric epoxidation started from the dioxomolybdcnum-/V-cthylcphcdrinc complex,4 progressed to a peroxomolybdenum complex,5 then vanadium complexes substituted with various hydroxamic acid ligands,6 and the most successful procedure may now prove to be the tetroisopropoxyltitanium-tartrate-mediated asymmetric epoxidation of allylic alcohols. [Pg.196]

The epoxidation of olefmic hydrocarbons without other coordinating groups is 10 times slower in the presence of vanadium complexes than with molybdenum catalysts. Nonetheless, the reaction of tert-bnXyX hydroperoxide with an olefin such as cyclohexene in the presence of [VO(acac)2], [V(acac)3], [V(oct)3] or [VO( -BuO)3], is nearly quantitative at 84 C [408, 386]. Rate laws are consistent with reaction via rate determining attack of olefin on a vanadium (V)-hydroperoxide complex. Epoxidations were first order each in olefin and in catalyst but exhibited a Michaelis-like dependency on hydroperoxide, equation (258), where is a limiting specific rate (at very high ratios of hydroperoxide to catalyst), [Vq] is the total concentration of added vanadium, and Kp is the association constant for the vanadium(V) complex presumed to be the active intermediate. [Pg.99]

In contrast to the results obtained with simple olefins, olefins containing alcohol functionality were epoxidized much more rapidly in the presence of vanadium complexes than with molybdenum [409,410]. The efficiency of the vanadium catalyzed epoxidation of allyl alcohol has been rationalized on the basis of an intermediate complex having a geometry which places the electron-deficient oxygen of the hydroperoxide in the vicinity of the double bond, equation (265). [Pg.100]

Liquid-Phase Epoxidation with Hydroperoxides. Molybdenum, vanadium, and tungsten have been proposed as Hquid-phase catalysts for the oxidation of the ethylene by hydroperoxides to ethylene oxide (205). tert- uty hydroperoxide is the preferred oxidant. The process is similar to the arsenic-catalyzed route, and iacludes the use of organometaUic complexes. [Pg.461]

Table 6.4 Comparison of the performances showed by the vanadium complexes with ligands 4—7 in the AE reaction generating the epoxides A and B, respectively. Table 6.4 Comparison of the performances showed by the vanadium complexes with ligands 4—7 in the AE reaction generating the epoxides A and B, respectively.
Another interesting asymmetric epoxidation technique using metal catalysis involves the vanadium complexes of A-hydroxy-[2.2]paracyclophane-4-carboxylic amides (e.g., 19), which serve as catalysts for the epoxidation of allylic alcohols with f-butyl hydroperoxide as... [Pg.54]

Reports have appeared claiming that triperoxo vanadates behave as nucleophilic oxidants. In particular, triperoxo vanadium complexes, A[V(02)3]3H20 (A=Na or K), are proposed as efficient oxidants of a,-unsaturated ketones to the corresponding epoxide, benzonitrile to benzamide and benzil to benzoic acid, reactions which are usually carried out with alkaline hydrogen peroxide. Subsequent studies concerning the oxidation of cyclobutanone to 4-hydroxybutanoic acid, carried out with the above-cited triperoxo vanadium compound, in alcohol/water mixtures, clearly indicated that such a complex does not act as nucleophilic oxidant, but only as a source of HOO anion. [Pg.1074]

To probe hydroperoxide reactivity in these systems we studied the reaction of tert-butyl hydroperoxide in the presence of [C5H5V(CO)4]. In contrast to the rhodium(I) and molybdenum complexes, [C5H5V-(CO)4] catalyzed the rapid decomposition of tert-butyl hydroperoxide to oxygen and tert-butyl alcohol in both toluene and TME (Table II). When reaction was done by adding the hydroperoxide rapidly to the vanadium complex in TME, no epoxide (I) was produced. However, when the TME solution of [C5H5V(CO)4] was treated with a small amount (2-3 times the molar quantity of vanadium complex) of tert-butyl hydroperoxide at room temperature, a species was formed in situ which could catalyze the epoxidation of TME. Subsequent addition of tert-butyl hydroperoxide gave I in 13% yield (Table II). This vanadium complex also could catalyze the epoxidation of the allylic alcohol (II) to give tert-butyl alcohol and IV (Reaction 14). Reaction 14 was nearly quantitative, and the reaction rate was considerably faster than with TME. [Pg.81]

As with TME oxidation, the vanadium (IV) complex, [(CsH oVClo], did not readily initiate cyclohexene oxidation. This complex, however, is an efficient catalyst for allylic alcohol epoxidation. The ability of the vanadium complex to initiate oxidation seems to be a function of its... [Pg.90]

The retarding effect of alcohols on the rate of epoxidation manifests itself in the observed autoretardation by the alcohol coproduct.428,434 446,447 The extent of autoretardation is related to the ratio of the equilibrium constants for the formation of catalyst-hydroperoxide and catalyst-alcohol complexes. This ratio will vary with the metal. In metal-catalyzed epoxidations with fe/T-butyl hydroperoxide, autoretardation by tert-butyl alcohol increased in the order W < Mo < Ti < V the rates of Mo- and W-catalyzed epoxidations were only slightly affected. Severe autoretardation by the alcohol coproduct was also observed in vanadium-catalyzed epoxidations.428 434 446 447 The formation of strong catalyst-alcohol complexes explains the better catalytic properties of vanadium compared to molybdenum for the epoxidation of allylic alcohols.429 430 452 On the other hand, molybdenum-catalyzed epoxidations of simple olefins proceed approximately 102 times faster than those catalyzed by vanadium.434 447 Thus, the facile vanadium-catalyzed epoxidation of allyl alcohol with tert-butyl hydroperoxide may involve transfer of an oxygen from coordinated hydroperoxide to the double bond of allyl alcohol which is coordinated to the same metal atom,430 namely,... [Pg.349]

It has recently been reported495 that the complex CsH5V(CO)4 (CSHS = cy-clopentadienyl) is an efficient catalyst for the stereoselective oxidation of cyclohexene to ris-l,2-epoxycyclohexane-3-ol in good yield (65% at 10% conversion). This high stereoselectivity is reminiscent of the highly selective vanadium-catalyzed epoxidations of allylic alcohols with alkyl hydroperoxides discussed earlier. The mechanism of reaction,... [Pg.356]

If the OH group is not blocked at all but left free, and the epoxidation reagent is the vanadium complex VO(acac)2 combined with f-BuOOH, the syn epoxide is formed instead. The vanadyl group chelates reagent and alcohol and delivers the reactive oxygen atom to the same face of the alkene. [Pg.877]

Epoxidation of allylic alcohols with peracids or hydroperoxide such as f-BuOaH in the presence of a transition metal catalyst is a useful procedure for the synthesis of epoxides, particularly stereoselective synthesis [587-590]. As the transition metal catalyst, molybdenum and vanadium complexes are well studied and, accordingly, are the most popular [587-590], (Achiral) titanium compounds are also known to effect this transformation, and result in stereoselectivity different from that of the aforementioned Mo- and V-derived catalysts. The stereochemistry of epoxidation by these methods has been compared for representative examples, including simple [591] and more complex trcMs-disubstituted, rrans-trisubstituted, and cis-trisubstituted allyl alcohols (Eqs (253) [592], (254) [592-594], and (255) [593]). In particular the epoxidation of trisubstituted allyl alcohols shown in Eqs (254) and (255) highlights the complementary use of the titanium-based method and other methods. More results from titanium-catalyzed diastereoselective epoxidation are summarized in Table 25. [Pg.762]

Many hydroxylated linalools [including compounds 105, 106, 108, and 110, both (Z)- and ( )-isomers], as well as the epoxides of both furanoid (109) and pyranoid (see section on pyrans) linalyl oxides, have been identified in papaya fruit (Carica papaya). At the same time, the first reported occurrence of die two linalool epoxides (112) in nature was made. These epoxides are well known to be unstable and easily cyclized (see Vol. 2, p. 165) and have been made by careful peracid oxidation of linalool. An interesting new method has now been described. While the vanadium- or titanium-catalyzed epoxidation of geraniol (25) gave the 2,3-epoxide (see above), as does molybdenum-catalyzed epoxidation with hydrogen peroxide, the epoxidation of linalool (28) with molybdenum or tungsten peroxo complexes and hydrogen peroxide led, by reaction on the 6,7-double bond, to 112. ... [Pg.298]

Two-step transformations involving an intermediate epoxide show promise. For example, epoxidation may be performed with peracetic acid alone and more efficiently with "vanadium complex/tert-butyl hydroperoxide" combinations. The results obtained with these two systems are compared with those for other catalytic systems. [Pg.546]

Allylic alcohols, for example geraniol, 2-methylallyl alcohol, 3,3-dimethylallyl alcohol, 3-buten-2-ol, l-octen-3-ol, and l-hexen-3-ol, are epoxidized with tert-butyl hydroperoxide in the presence of a vanadyl salen oxo-transfer catalyst in supercritical CO2. The metal catalyst was prepared in a simple two-step, Schiff base-type reaction to form the salen ligand, followed by complexation to the vanadyl group. The use of non-toxic supercritical CO2 in the presence of the new epoxidation vanadium catalyst led to yields and diastereoselectivities that were comparable to those resulting from the use of environmentally hazardous solvents such as CH2CI2 [59]. [Pg.417]


See other pages where Epoxidation With Vanadium Complexes is mentioned: [Pg.699]    [Pg.82]    [Pg.260]    [Pg.33]    [Pg.394]    [Pg.397]    [Pg.401]    [Pg.423]    [Pg.425]    [Pg.11]    [Pg.320]    [Pg.394]    [Pg.401]    [Pg.423]    [Pg.425]    [Pg.1074]    [Pg.73]    [Pg.82]    [Pg.82]    [Pg.88]    [Pg.91]    [Pg.97]    [Pg.1228]    [Pg.107]    [Pg.82]    [Pg.42]    [Pg.558]    [Pg.188]    [Pg.224]    [Pg.104]    [Pg.168]    [Pg.14]    [Pg.122]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Epoxides complex

Epoxides vanadium

Vanadium complexes

With epoxides

© 2024 chempedia.info