Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valence-shell electron-pair repulsion bonds

VSEPR (Valence Shell Electron Pair Repulsion) bonding pairs (X) and lone pairs (E) define geometry of AXn reflects hybridization of A... [Pg.2]

The tetrahedral geometry of methane is often explained with the valence shell electron pair repulsion (VSEPR) model The VSEPR model rests on the idea that an electron pair either a bonded pair or an unshared pair associated with a particular atom will be as far away from the atom s other electron pairs as possible Thus a tetrahedral geomehy permits the four bonds of methane to be maximally separated and is charac terized by H—C—H angles of 109 5° a value referred to as the tetrahedral angle... [Pg.29]

Valence shell electron pair repulsion theory, 1,32-39 effective bond length ratios, 1.34 halogenium species, 3, 312 noble gas compounds, 3,312 repulsion energy coefficient, 1, 33 Valency... [Pg.243]

The Lewis structures encountered in Chapter 2 are two-dimensional representations of the links between atoms—their connectivity—and except in the simplest cases do not depict the arrangement of atoms in space. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angles. The model starts from the idea that because electrons repel one another, the shapes of simple molecules correspond to arrangements in which pairs of bonding electrons lie as far apart as possible. Specifically ... [Pg.220]

The most stable shape for any molecule maximizes electron-nuclear attractive interactions while minimizing nuclear-nuclear and electron-electron repulsions. The distribution of electron density in each chemical bond is the result of attractions between the electrons and the nuclei. The distribution of chemical bonds relative to one another, on the other hand, is dictated by electrical repulsion between electrons in different bonds. The spatial arrangement of bonds must minimize electron-electron repulsion. This is accomplished by keeping chemical bonds as far apart as possible. The principle of minimizing electron-electron repulsion is called valence shell electron pair repulsion, usually abbreviated VSEPR. [Pg.604]

The molecular geometry of a complex depends on the coordination number, which is the number of ligand atoms bonded to the metal. The most common coordination number is 6, and almost all metal complexes with coordination number 6 adopt octahedral geometry. This preferred geometry can be traced to the valence shell electron pair repulsion (VSEPR) model Introduced In Chapter 9. The ligands space themselves around the metal as far apart as possible, to minimize electron-electron repulsion. [Pg.1438]

Valence The highest-energy electrons in an atom, which an atom loses, gains, or shares in forming a chemical bond. Valence shell electron-pair repulsion (VSEPR) A procedure based on electron repulsion in molecules that enables chemists to predict approximate bond angles. [Pg.125]

To derive the values of the coefficients at, Ph y, and 8i so that the bond energy is maximized and the correct molecular structure results, the mutual interactions between the electrons have to be considered. This requires a great deal of computational expenditure. However, in a qualitative manner the interactions can be estimated rather well that is exactly what the valence shell electron-pair repulsion theory accomplishes. [Pg.88]

Once computed on a 3D grid from a given ab initio wave function, the ELF function can be partitioned into an intuitive chemical scheme [30], Indeed, core regions, denoted C(X), can be determined for any atom, as well as valence regions associated to lone pairs, denoted V(X), and to chemical bonds (V(X,Y)). These ELF regions, the so-called basins (denoted 2), match closely the domains of Gillespie s VSEPR (Valence Shell Electron Pair Repulsion) model. Details about the ELF function and its applications can be found in a recent review paper [31],... [Pg.146]

Due to the simplicity and the ability to explain the spectroscopic and excited state properties, the MO theory in addition to easy adaptability for modern computers has gained tremendous popularity among chemists. The concept of directed valence, based on the principle of maximum overlap and valence shell electron pair repulsion theory (VSEPR), has successfully explained the molecular geometries and bonding in polyatomic molecules. [Pg.29]

The applications of valence bond theory, the valence shell electron pair repulsion theory, to the bonding and bond angles of triatomic molecules... [Pg.83]

Vacancy mechanism, 266 Valence bond (VB) theory, 139-153. 391-394.474 Valence shell electron pair repulsion (VSEPR) model. 203-206. 217-218... [Pg.538]


See other pages where Valence-shell electron-pair repulsion bonds is mentioned: [Pg.100]    [Pg.39]    [Pg.42]    [Pg.47]    [Pg.1039]    [Pg.15]    [Pg.42]    [Pg.47]    [Pg.73]    [Pg.85]    [Pg.100]    [Pg.73]    [Pg.99]    [Pg.146]    [Pg.325]    [Pg.92]    [Pg.100]    [Pg.135]    [Pg.80]    [Pg.504]    [Pg.604]    [Pg.83]    [Pg.84]    [Pg.73]    [Pg.312]    [Pg.25]    [Pg.198]    [Pg.564]   


SEARCH



Bonded pairs

Bonding pair

Bonding valence electrons

Electron pair repulsion

Electron pairs bonding

Electron valence bond

Electron-pair bonds

Electronic repulsion

Electronics pair repulsion

Electronics shells

Electrons valence-shell electron-pair

Electrons valence-shell electron-pair repulsion

Paired valence

Shell, electron valence

Valence Shell Electron Pair

Valence Shell Electron Pair Repulsion

Valence electron

Valence electrons Valency

Valence electrons repulsion

© 2024 chempedia.info