Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Upper critical solution temperature UCST

Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value. Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value.
The Class I binary diagram is the simplest case (see Fig. 6a). The P—T diagram consists of a vapor—pressure curve (soHd line) for each pure component, ending at the pure component critical point. The loci of critical points for the binary mixtures (shown by the dashed curve) are continuous from the critical point of component one, C , to the critical point of component two,Cp . Additional binary mixtures that exhibit Class I behavior are CO2—/ -hexane and CO2—benzene. More compHcated behavior exists for other classes, including the appearance of upper critical solution temperature (UCST) lines, two-phase (Hquid—Hquid) immiscihility lines, and even three-phase (Hquid—Hquid—gas) immiscihility lines. More complete discussions are available (1,4,22). Additional simple binary system examples for Class III include CO2—hexadecane and CO2—H2O Class IV, CO2—nitrobenzene Class V, ethane—/ -propanol and Class VI, H2O—/ -butanol. [Pg.222]

Figure 8.17 Vapor fugacity for component 2 in a liquid mixture. At temperature T, large positive deviations from Raoult s law occur. At a lower temperature, the vapor fugacity curve goes through a point of inflection (point c), which becomes a critical point known as the upper critical end point (UCEP). The temperature Tc at which this happens is known as the upper critical solution temperature (UCST). At temperatures less than Tc, the mixture separates into two phases with compositions given by points a and b. Component 1 would show similar behavior, with a point of inflection in the f against X2 curve at Tc, and a discontinuity at 7V... Figure 8.17 Vapor fugacity for component 2 in a liquid mixture. At temperature T, large positive deviations from Raoult s law occur. At a lower temperature, the vapor fugacity curve goes through a point of inflection (point c), which becomes a critical point known as the upper critical end point (UCEP). The temperature Tc at which this happens is known as the upper critical solution temperature (UCST). At temperatures less than Tc, the mixture separates into two phases with compositions given by points a and b. Component 1 would show similar behavior, with a point of inflection in the f against X2 curve at Tc, and a discontinuity at 7V...
Point c is a critical point known as the upper critical end point (UCEP).y The temperature, Tc, where this occurs is known as the upper critical solution temperature (UCST) and the composition as the critical solution mole fraction, JC2,C- The phenomenon that occurs at the UCEP is in many ways similar to that which happens at the (liquid + vapor) critical point of a pure substance. For example, at a temperature just above Tc. critical opalescence occurs, and at point c, the coefficient of expansion, compressibility, and heat capacity become infinite. [Pg.414]

The critical point (Ij of the two-phase region encountered at reduced temperatures is called an upper critical solution temperature (UCST), and that of the two-phase region found at elevated temperatures is called, perversely, a lower critical solution temperature (LCST). Figure 2 is drawn assuming that the polymer in solution is monodisperse. However, if the polymer in solution is polydisperse, generally similar, but more vaguely defined, regions of phase separation occur. These are known as "cloud-point" curves. The term "cloud point" results from the visual observation of phase separation - a cloudiness in the mixture. [Pg.183]

UOP FCC unit, 11 700-702 UOP/HYDRO MTO process, 18 568 UOP Olex olefin separation process, 17 724 Up-and-Down Method, 25 217 U/Pb decay schemes, 25 393-394 Updraft sintering, 26 565 Upflow anaerobic sludge blanket (UASB) in biological waste treatment, 25 902 Upgraded slag (UGS), 25 12, 33 Upland Cotton, U.S., 8 13 U-Polymer, 20 189 Upper critical solution temperature (UCST), 20 320, 322 Upper explosive limit (UEL), 22 840 Upper flammability limit, 23 115 Upper flammable limit (UFL), 22 840 Upper Freeport (MVB) coal... [Pg.989]

Fig. 3a,b. Schematic phase diagrams displaying a upper critical solution temperature (UCST) behavior b lower critical solution temperature (LOST) behavior... [Pg.175]

Note A miscibility gap is observed at temperatures below an upper critical solution temperature (UCST) or above the lower critical solution temperature (LCST). Its location depends on pressure. In the miscibility gap, there are at least two phases coexisting. [Pg.194]

Note 1 Below the LCST and above the upper critical solution temperature (UCST), if it exists, a single phase exists for all compositions. [Pg.196]

The lower critical solution temperature is another crucial polymer property, which, together with the Upper Critical Solution Temperature (UCST), defines fhe fwo solubility boundaries of polymers in solution. Typically, systems are completely miscible below the LCST but only partially miscible above the LCST and completely immiscible above the UCST. [Pg.139]

The instance we have considered here, that of a polymer in a poor solvent, results in an upper critical solution temperature (UCST) as shown in Figure 2.33. This occurs due to (a) decreased attractive forces between like molecules at higher temperatures and (b) increased solubility. For some systems, however, a decrease in solubility can occur, and the corresponding critical temperature is located at the minimum of the miscibility curve, resulting in a lower critical solution temperature (LCST). This situation is illustrated in Figure 2.34. [Pg.196]

The cloud point curves of the epoxy monomer/PEI blend and BPACY monomer/PEI blend exhibited an upper critical solution temperature (UCST) behavior, whereas partially cured epoxy/PEI blend and BPACY/PEI blend showed bimodal UCST curves with two critical compositions, ft is attributed to the fact that, at lower conversion, thermoset resin has a bimodal distribution of molecular weight in which unreacted thermoset monomer and partially reacted thermoset dimer or trimer exist simultaneously. The rubber/epoxy systems that shows bimodal UCST behavior have been reported in previous papers [40,46]. Figure 3.7 shows the cloud point curve of epoxy/PEI system. With the increase in conversion (molecular weight) of epoxy resin, the bimodal UCST curve shifts to higher temperature region. [Pg.118]

The phase behaviour of many polymer-solvent systems is similar to type IV and type HI phase behaviour in the classification of van Konynenburg and Scott [5]. In the first case, the most important feature is the presence of an Upper Critical Solution Temperature (UCST) and a Lower Critical Solution Temperature (LCST). The UCST is the temperature at which two liquid phases become identical (critical) if the temperature is isobarically increased. The LCST is the temperature at which two liquid phases critically merge if the system temperature is isobarically reduced. At temperatures between the UCST and the LCST a single-phase region is found, while at temperatures lower than the UCST and higher than the LCST a liquid-liquid equilibrium occurs. Both the UCST and the LCST loci end in a critical endpoint, the point of intersection of the critical curve and the liquid liquid vapour (hhg) equilibrium line. In the two intersection points the two liquid phases become critical in the presence of a... [Pg.50]

In a blend of immiscible homopolymers, macrophase separation is favoured on decreasing the temperature in a blend with an upper critical solution temperature (UCST) or on increasing the temperature in a blend with a lower critical solution temperature (LCST). Addition of a block copolymer leads to competition between this macrophase separation and microphase separation of the copolymer. From a practical viewpoint, addition of a block copolymer can be used to suppress phase separation or to compatibilize the homopolymers. Indeed, this is one of the main applications of block copolymers. The compatibilization results from the reduction of interfacial tension that accompanies the segregation of block copolymers to the interface. From a more fundamental viewpoint, the competing effects of macrophase and microphase separation lead to a rich critical phenomenology. In addition to the ordinary critical points of macrophase separation, tricritical points exist where critical lines for the ternary system meet. A Lifshitz point is defined along the line of critical transitions, at the crossover between regimes of macrophase separation and microphase separation. This critical behaviour is discussed in more depth in Chapter 6. [Pg.9]

For salts with univalent ions, Eq. (4) predicts critical points near room temperature for systems with e 5 [72]. Liquid-liquid immiscibilities in several electrolyte solutions are known to satisfy this criterion [5, 71, 72]. Note that these gaps do not necessarily possess an upper critical solution temperature (UCST). Theory can rationalize a lower critical solution temperature (LCST) as well, if the product esT decreases with increasing temperature. [Pg.9]

Fig. 8.6. Liquid-liquid equilibria of alcohol-ionic liquid mixtures [105], The left side shows the LLE curves of l-butyl-3-methyl-imidazolium-PF6 mixtures with alcohols (ethanol, blue 1-propanol, red and 1-butanol, green symbols). The experimental curves (solid symbols) show a shape different from the calculated LLE curves, but the upper critical-solution temperatures (UCST) are surprisingly well met. On the right side, the trends of the UCST with a modification of the 1-alkyl-group of the anion (butyl = 4, octyl = 8) is shown. Again, the COSMO-RS predictions (open symbols, same color code as on the left) are in surprisingly good agreement with the experimental data. Fig. 8.6. Liquid-liquid equilibria of alcohol-ionic liquid mixtures [105], The left side shows the LLE curves of l-butyl-3-methyl-imidazolium-PF6 mixtures with alcohols (ethanol, blue 1-propanol, red and 1-butanol, green symbols). The experimental curves (solid symbols) show a shape different from the calculated LLE curves, but the upper critical-solution temperatures (UCST) are surprisingly well met. On the right side, the trends of the UCST with a modification of the 1-alkyl-group of the anion (butyl = 4, octyl = 8) is shown. Again, the COSMO-RS predictions (open symbols, same color code as on the left) are in surprisingly good agreement with the experimental data.
Figure 8.4 Temperature vs. composition transformation diagram for a modified thermoset with an upper critical solution temperature (UCST) behavior (Crit = critical point for a and p see text). Figure 8.4 Temperature vs. composition transformation diagram for a modified thermoset with an upper critical solution temperature (UCST) behavior (Crit = critical point for a and p see text).

See other pages where Upper critical solution temperature UCST is mentioned: [Pg.624]    [Pg.630]    [Pg.1039]    [Pg.408]    [Pg.2001]    [Pg.664]    [Pg.148]    [Pg.302]    [Pg.129]    [Pg.24]    [Pg.174]    [Pg.197]    [Pg.178]    [Pg.17]    [Pg.299]    [Pg.408]    [Pg.5]    [Pg.244]    [Pg.365]    [Pg.121]    [Pg.14]    [Pg.145]    [Pg.148]    [Pg.193]   
See also in sourсe #XX -- [ Pg.299 ]

See also in sourсe #XX -- [ Pg.77 ]

See also in sourсe #XX -- [ Pg.33 , Pg.37 , Pg.63 , Pg.72 , Pg.74 , Pg.75 ]

See also in sourсe #XX -- [ Pg.148 ]

See also in sourсe #XX -- [ Pg.51 , Pg.54 , Pg.175 ]

See also in sourсe #XX -- [ Pg.170 , Pg.212 ]

See also in sourсe #XX -- [ Pg.213 , Pg.217 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.227 , Pg.230 , Pg.231 , Pg.232 , Pg.233 , Pg.234 , Pg.238 ]

See also in sourсe #XX -- [ Pg.260 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.18 , Pg.141 , Pg.238 ]

See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.248 ]

See also in sourсe #XX -- [ Pg.60 , Pg.62 , Pg.63 , Pg.82 , Pg.87 ]

See also in sourсe #XX -- [ Pg.74 , Pg.133 , Pg.142 , Pg.156 , Pg.236 ]

See also in sourсe #XX -- [ Pg.324 ]




SEARCH



CRITICAL SOLUTION

Critical solution temperature

Critical temperatur

Critical temperature upper

Critical upper

Solute temperature

Temperature critical

Temperature solutions

Upper Critical Solution

© 2024 chempedia.info