Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated, enantioselective

The catalytic oxidative carbonylation of allene with PdCb and CuCh in MeOH affords methyl a-methoxymethacrylate (559)[499]. The intramolecular oxidative aminocarbonylation of the 6-aminoallene 560 affords the unsaturated J-amino ester 561. The reaction has been applied to the enantioselective synthesis of pumiliotoxin (562)[500]. A similar intramolecular oxycarbonyla-tion of 6-hydroxyallenes affords 2-(2-tetrahydrofuranyl)acrylates[501]. [Pg.103]

L = P(CH3)3 or CO, oxidatively add arene and alkane carbon—hydrogen bonds (181,182). Catalytic dehydrogenation of alkanes (183) and carbonylation of bensene (184) has also been observed. Iridium compounds have also been shown to catalyse hydrogenation (185) and isomerisation of unsaturated alkanes (186), hydrogen-transfer reactions, and enantioselective hydrogenation of ketones (187) and imines (188). [Pg.182]

One interesting phenomenon was the effect of the boron substituent on enantioselectivity. The stereochemistry of the reaction of a-substituted a,/ -unsatu-rated aldehydes was completely independent of the steric features of the boron substituents, probably because of a preference for the s-trans conformation in the transition state in all cases. On the other hand, the stereochemistry of the reaction of cyclopentadiene with a-unsubstituted a,/ -unsaturated aldehydes was dramatically reversed on altering the structure of the boron substituents, because the stable conformation changed from s-cis to s-trans, resulting in production of the opposite enantiomer. It should be noted that selective cycloadditions of a-unsubsti-tuted a,/ -unsaturated aldehydes are rarer than those of a-substituted a,/ -unsatu-... [Pg.7]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

The q cloaddition reaction catalyzed by complex 9d proceeds well for several aromatic and a,/ -unsaturated aldehydes and has been used in an enantioselective route to the carbon-branched pyranose derivative cis-3c (Scheme 4.10) [17]. [Pg.160]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The chiral BOX-copper(II) complexes are effective catalysts for enantioselective cycloaddition reactions of a,/ -unsaturated acyl phosphonates [48] and a,/ -unsaturated keto esters [38b, 49]. [Pg.179]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

Until this work, the reactions between the benzyl sulfonium ylide and ketones to give trisubstituted epoxides had not previously been used in asymmetric sulfur ylide-mediated epoxidation. It was found that good selectivities were obtained with cyclic ketones (Entry 6), but lower diastereo- and enantioselectivities resulted with acyclic ketones (Entries 7 and 8), which still remain challenging substrates for sulfur ylide-mediated epoxidation. In addition they showed that aryl-vinyl epoxides could also be synthesized with the aid of a,P-unsaturated sulfonium salts lOa-b (Scheme 1.4). [Pg.5]

With electron-deficient aromatic substrates (Entries 4 and 5), high yields and selectivities were observed, but enantioselectivities were variable and solvent-de-pendent (compare Entry 6 with 7 and see Section 1.2.1.3 for further discussion). With a,P-unsaturated tosylhydrazone salts, selectivities and yields were lower. The scope of this process has been extensively mapped out, enabling the optimum disconnection for epoxidation to be chosen [10]. [Pg.9]

The tartrate ester modified allylboronates, the diisopropyl 2-allyl-l,3,2-dioxaborolane-4,5-di-carboxylates, are attractive reagents for organic synthesis owing to their ease of preparation and stability to storage71. In the best cases these reagents are about as enantioselective as the allyl(diisopinocampheyl)boranes (82-88% ee with unhindered aliphatic aldehydes), but with hindered aliphatic, aromatic, a,/l-unsaturated and many a- and /5-alkoxy-substituted aldehydes the enantioselectivity falls to 55-75% ee71a-b... [Pg.291]

It has been observed, however, that the enantioselectivity of reactions of tartrate ester modified allylboronates with metal carbonyl complexes of unsaturated aldehydes are significantly improved compared with the results with the metal-free, uncomplexed aldehydes72. Two such examples involve the (benzaldehyde)tricarbonylchromium complex and the hexacarbonyl(2-... [Pg.292]

The reaction of butyllithium with 1-naphthaldehyde cyclohexylimine in the presence of (/C )-l,2-diphenylethane-1,2-diol dimethyl ether in toluene at —78 °C, followed by treatment with acetate buffer, gave 2-butyl-1,2-dihydronaphthalene-l-carbaldehyde, which was then reduced with sodium borohydride in methanol to afford (1 R,2.S)-2-butyl-1 -hydroxymcthyl-1,2-dihydronaphthalene in 80% overall yield with 91 % ee83. Similarly, the enantioselective conjugate addition of organolithium reagents to several a,/J-unsaturated aldimines took place in the presence of C2-symmetric chiral diethers, such as (/, / )-1,2-butanediol dimethyl ether and (/, / )- ,2-diphenylethane-1,2-diol dimethyl ether. [Pg.909]


See other pages where Unsaturated, enantioselective is mentioned: [Pg.111]    [Pg.111]    [Pg.111]    [Pg.111]    [Pg.94]    [Pg.176]    [Pg.178]    [Pg.171]    [Pg.13]    [Pg.15]    [Pg.181]    [Pg.183]    [Pg.251]    [Pg.271]    [Pg.74]    [Pg.646]    [Pg.8]    [Pg.30]    [Pg.32]    [Pg.316]    [Pg.320]    [Pg.459]    [Pg.154]    [Pg.164]    [Pg.304]   


SEARCH



Acid Unsaturated, enantioselective

Acid Unsaturated, enantioselective conjugate

Acid Unsaturated, enantioselective nitrile

Aldehyde Unsaturated, enantioselective

Amide Unsaturated, enantioselective

Amide Unsaturated, enantioselective nitrile

Enantioselective Hydrogenation of Unsaturated Acid and Ester Derivatives

Enantioselective Hydrogenation of Unsaturated Alcohols

Enantioselective Hydrogenation of a,P-Unsaturated Acids or Esters

Unsaturated, enantioselective Reaction

Unsaturated, enantioselective conjugate

Unsaturated, enantioselective conjugate addition

Unsaturated, enantioselective epoxidation

© 2024 chempedia.info