Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde Unsaturated, enantioselective

The tartrate ester modified allylboronates, the diisopropyl 2-allyl-l,3,2-dioxaborolane-4,5-di-carboxylates, are attractive reagents for organic synthesis owing to their ease of preparation and stability to storage71. In the best cases these reagents are about as enantioselective as the allyl(diisopinocampheyl)boranes (82-88% ee with unhindered aliphatic aldehydes), but with hindered aliphatic, aromatic, a,/l-unsaturated and many a- and /5-alkoxy-substituted aldehydes the enantioselectivity falls to 55-75% ee71a-b... [Pg.291]

Novel bidentate chiral Lewis acids derived from 1.8-naphthalenediylbis(dichloroborane) and modified amino acids as chiral auxiliary have been successfully utilized as effective catalysts for the asymmetric Diels-Alder reaction of a,[ -unsaturated aldehydes. The enantioselectivity is highly sensitive to the kind of chiral amino acids. Moderate enantioselectivity was obtained with the tryptophan-derived ligand for the endo adduct, but amino acids without aromatic groups... [Pg.470]

Asymmetric Diels-AUer reactions The observation that simple acyloxy-boranes such as H2BOCOCH=CH2, prepared by reaction of BH3 with acrylic acid, can serve as Lewis acid catalysts for reactions of the a,P-unsaturated acids with cyclopentadiene (15, 2) has been extended to the preparation of chiral acyloxy-boranes derived from tartaric acid. The complex formulated as 3, prepared by reaction of BH3 with the monoacylated tartaric acid 2, catalyzes asymmetric Diels-Alder reactions of a,P-enals with cyclopentadiene with high enantioselectivity. The process is applicable to various dienes and aldehydes with enantioselectivities generally of 80-97 % ee. [Pg.314]

For satisfactory diemo- and stereoselectivity, most catalytic, direct cross-aldol methods are limited to the use of non enolizable (aromatic, a-tert-alkyl) or kineti-cally non enolizable (highly branched, ,/funsaturated) aldehydes as acceptor carbonyls. With aromatic aldehydes, however, enantioselectivity is sometimes moderate, and the dehydration side-product may be important. With regard to the donor counterpart, the best suited pronucleophile substrates for these reactions are symmetric ketones (acetone) and ketones with only one site amenable for enolization (acetophenones). With symmetric cyclic or acyclic ketones superior to acetone, syn/anti mixtures of variable composition are obtained [8b, 11, 19a]. Of particularly broad scope is the reaction of N-propionylthiazolidinethiones with aldehydes, which regularly gives high enantioselectivity of the syn aldol adduct of aromatic, a,fi-unsaturated, branched, and unbranched aldehydes [13]. [Pg.344]

HongL, WangL, Sun WS, Wong KY, Wang R (2009) Organocatalytic AsymmetricEnede/-Crafts AUcylation/Cyclization Cascade Reaction of 1-Naphthols and a,P-Unsaturated Aldehydes An Enantioselective Synthesis of Chromanes and Dihydrobenzopyranes. J Org Chem 74 6881... [Pg.153]

The use of enamine catalysis in the enantioselective a-functionalization of carbonyl compounds has been reviewed, including aldol, Mannich, and alkylation processes," and a short review has examined enantioselective a-alkylation of aldehydes Benzodithiolylium tetrafluoroborate (133) is a water-stable salt and can be added enantioselectively to aldehydes at the a-position in the presence of simple chiral organocatalysts, giving the corresponding alcohol. The sulfurs can be readily cleaved with H2/Raney Ni, rendering the process a formal tf-methylation of aldehydes." a ,/3-Unsaturated aldehydes undergo enantioselective a- and y-alkylation via dien-amine activation, using a diarylprolinol TMS ether as catalyst." ... [Pg.45]

Shortly thereafter, acetate aldol reactions using camphor-derived imidazo-lidinone 27 vere reported by Palomo and co vorkers [15]. They reported moderate yields and enantioselectivity for a variety of unsaturated and aliphatic aldehydes (Table 2.4, entries 8-12). Interestingly, enantioselectivity for unsaturated aldehydes vas opposite that for aliphatic aldehydes. Also, enantioselectivity reported for titanium vas completely opposite that of the corresponding lithium enolate reactions. [Pg.67]

One interesting phenomenon was the effect of the boron substituent on enantioselectivity. The stereochemistry of the reaction of a-substituted a,/ -unsatu-rated aldehydes was completely independent of the steric features of the boron substituents, probably because of a preference for the s-trans conformation in the transition state in all cases. On the other hand, the stereochemistry of the reaction of cyclopentadiene with a-unsubstituted a,/ -unsaturated aldehydes was dramatically reversed on altering the structure of the boron substituents, because the stable conformation changed from s-cis to s-trans, resulting in production of the opposite enantiomer. It should be noted that selective cycloadditions of a-unsubsti-tuted a,/ -unsaturated aldehydes are rarer than those of a-substituted a,/ -unsatu-... [Pg.7]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

The q cloaddition reaction catalyzed by complex 9d proceeds well for several aromatic and a,/ -unsaturated aldehydes and has been used in an enantioselective route to the carbon-branched pyranose derivative cis-3c (Scheme 4.10) [17]. [Pg.160]

It has been observed, however, that the enantioselectivity of reactions of tartrate ester modified allylboronates with metal carbonyl complexes of unsaturated aldehydes are significantly improved compared with the results with the metal-free, uncomplexed aldehydes72. Two such examples involve the (benzaldehyde)tricarbonylchromium complex and the hexacarbonyl(2-... [Pg.292]

Nair and co-workers have demonstrated NHC-catalysed formation of spirocyclic diketones 173 from a,P-unsaturated aldehydes 174 and snbstitnted dibenzylidine-cyclopentanones 175. Where chalcones and dibenzylidene cyclohexanones give only cyclopentene products (as a result of P-lactone formation then decarboxylation), cyclopentanones 175 give only the spirocychc diketone prodncts 173 [73]. Of particular note is the formation of an all-carbon quaternary centre and the excellent level of diastereoselectivity observed in the reaction. An asymmetric variant of this reaction has been demonstrated by Bode using chiral imidazolium salt 176, obtaining the desymmetrised product with good diastereo- and enantioselectivity, though in modest yield (Scheme 12.38) [74],... [Pg.283]

The discussion of the activation of bonds containing a group 15 element is continued in chapter five. D.K. Wicht and D.S. Glueck discuss the addition of phosphines, R2P-H, phosphites, (R0)2P(=0)H, and phosphine oxides R2P(=0)H to unsaturated substrates. Although the addition of P-H bonds can be sometimes achieved directly, the transition metal-catalyzed reaction is usually faster and may proceed with a different stereochemistry. As in hydrosilylations, palladium and platinum complexes are frequently employed as catalyst precursors for P-H additions to unsaturated hydrocarbons, but (chiral) lanthanide complexes were used with great success for the (enantioselective) addition to heteropolar double bond systems, such as aldehydes and imines whereby pharmaceutically valuable a-hydroxy or a-amino phosphonates were obtained efficiently. [Pg.289]

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

Lewis acid-catalyzed additions can be carried out in the presence of other chiral ligands that induce enantioselectivity.156 Titanium TADDOL induces enantioselectivity in alkylzinc additions to aldehydes. A variety of aromatic, alkyl, and a, (3-unsaturated aldehydes give good results with primary alkylzinc reagents.157... [Pg.656]

The enantioselective synthesis in Scheme 13.22 is based on stereoselective reduction of an a, (3-unsaturated aldehyde generated from (—)-(.V)-limonene (Step A). The reduction was done by Baker s yeast and was completely enantioselective. The diastereoselectivity was not complete, generating an 80 20 mixture, but the diastere-omeric alcohols were purified at this stage. After oxidation to the aldehyde, the remainder of the side chain was introduced by a Grignard addition. The ester function... [Pg.1185]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]

In a recently published report by MacMillan s group [121] on the enantioselective synthesis of pyrroloindoline and furanoindoline natural products such as (-)-flustramine B 2-219 [122], enantiopure amines 2-215 were used as organocatalysts to promote a domino Michael addition/cyclization sequence (Scheme 2.51). As substrates, the substituted tryptamine 2-214 and a, 3-unsaturated aldehydes were used. Reaction of 2-214 and acrolein in the presence of 2-215 probably leads to the intermediate 2-216, which cyclizes to give the pyrroloindole moiety 2-217 with subsequent hydrolysis of the enamine moiety and reconstitution of the imidazolid-inone catalyst. After reduction of the aldehyde functionality in 2-217 with NaBH4 the flustramine precursor 2-218 was isolated in very good 90 % ee and 78 % yield. [Pg.80]

An enantioselective organocatalytic 1,3-DC reaction, based on the activation of a,fi-unsaturated aldehydes through the reversible formation of iminium ions with chiral imidazolidinones 100, was described. Good levels of asymmetric induction and diastereocontrol were achieved (up to 94% ee and 94 6 dr) <00JA9874>. [Pg.223]


See other pages where Aldehyde Unsaturated, enantioselective is mentioned: [Pg.35]    [Pg.35]    [Pg.77]    [Pg.35]    [Pg.178]    [Pg.171]    [Pg.13]    [Pg.15]    [Pg.8]    [Pg.30]    [Pg.154]    [Pg.164]    [Pg.304]    [Pg.118]    [Pg.302]    [Pg.137]    [Pg.158]    [Pg.320]    [Pg.327]    [Pg.123]    [Pg.246]    [Pg.141]    [Pg.73]    [Pg.156]    [Pg.306]    [Pg.109]    [Pg.476]    [Pg.1279]   


SEARCH



Aldehydes enantioselective

Aldehydes, unsaturated

Enantioselectivity aldehydes

Unsaturated, enantioselective

© 2024 chempedia.info